Category Archives: Big Data

Kellblog’s 2017 Predictions  

New Year’s means three things in my world:  (1) time to thank our customers and team at Host Analytics for another great year, (2) time to finish up all the 2017 planning items and approvals that we need to get done before the sales kickoff (including the one most important thing to do before kickoff), and time to make some predictions for the coming year.

Before looking at 2017, let’s see how I did with my 2016 predictions.

2016 Predictions Review

  1. The great reckoning begins. Correct/nailed.  As predicted, since most of the bubble was tied up in private companies owned by private funds, the unwind would happen in slow motion.  But it’s happening.
  2. Silicon Valley cools off a bit. Partial.  While IPOs were down, you couldn’t see the cooling in anecdotal data, like my favorite metric, traffic on highway101.
  3. Porter’s five forces analysis makes a comeback. Partial.  So-called “momentum investing” did cool off, implying more rational situation analysis, but you didn’t hear people talking about Porter per se.
  4. Cyber-cash makes a rise. CorrectBitcoin more doubled on the year (and Ethereum was up 8x) which perversely reinforced my view that these crypto-currencies are too volatile — people want the anonymity of cash without a highly variable exchange rate.  The underlying technology for Bitcoin, blockchain, took off big time.
  5. Internet of Things goes into trough of disillusionment. Partial.  I think I may have been a little early on this one.  Seems like it’s still hovering at the peak of inflated expectations.
  6. Data science rises as profession. Correct/easy.  This continues inexorably.
  7. SAP realizes they are a complex enterprise application company. Incorrect.  They’re still “running simple” and talking too much about enabling technology.  The stock was up 9% on the year in line with revenues up around 8% thus far.
  8. Oracle’s cloud strategy gets revealed – “we’ll sell you any deployment model you want as long as your annual bill goes up.”  Partial.  I should have said “we’ll sell you any deployment model you want as long as we can call it cloud to Wall St.”
  9. Accounting irregularities discovered at one or more unicorns. Correct/nailed.  During these bubbles the pattern always repeats itself – some people always start breaking the rules in order to stand out, get famous, or get rich.  Fortune just ran an amazing story that talks about the “fake it till you make it” culture of some diseased startups.
  10. Startup workers get disappointed on exits. Partial.  I’m not aware of any lawsuits here but workers at many high flyers have been disappointed and there is a new awareness that the “unicorn party” may be a good thing for founders and VCs, but maybe not such a good thing for rank-and-file employees (and executive management).
  11. The first cloud EPM S-1 gets filed. Incorrect.  Not yet, at least.  While it’s always possible someone did the private filing process with the SEC, I’m guessing that didn’t happen either.
  12. 2016 will be a great year for Host Analytics. Correct.  We had a strong finish to the year and emerged stronger than we started with over 600 great customers, great partners, and a great team.

Now, let’s move on to my predictions for 2017 which – as a sign of the times – will include more macro and political content than usual.

  1. The United States will see a level of divisiveness and social discord not seen since the 1960s. Social media echo chambers will reinforce divisions.  To combat this, I encourage everyone to sign up for two publications/blogs they agree with and two they don’t lest they never again hear both sides of an issue. (See map below, coutesy of Ninja Economics, for help in choosing.)  On an optimistic note, per UCSD professor Lane Kenworthy people aren’t getting more polarized, political parties are.

news

  1. Social media companies finally step up and do something about fake news. While per a former Facebook designer, “it turns out that bullshit is highly engaging,” these sites will need to do something to filter, rate, or classify fake news (let alone stopping to recommend it).  Otherwise they will both lose credibility and readership – as well as fail to act in a responsible way commensurate with their information dissemination power.
  1. Gut feel makes a comeback. After a decade of Google-inspired heavily data-driven and A/B-tested management, the new US administration will increasingly be less data-driven and more gut-feel-driven in making decisions.  Riding against both common sense and the big data / analytics / data science trends, people will be increasingly skeptical of purely data-driven decisions and anti-data people will publicize data-driven failures to popularize their arguments.  This “war on data” will build during the year, fueled by Trump, and some of it will spill over into business.  Morale in the Intelligence Community will plummet.
  1. Under a volatile leader, who seems to exhibit all nine of the symptoms of narcissistic personality disorder, we can expect sharp reactions and knee-jerk decisions that rattle markets, drive a high rate of staff turnover in the Executive branch, and fuel an ongoing war with the media.  Whether you like his policies or not, Trump will bring a high level of volatility the country, to business, and to the markets.
  1. With the new administration’s promises of $1T in infrastructure spending, you can expect interest rates to raise and inflation to accelerate. Providing such a stimulus to already strong economy might well overheat it.  One smart move could be buying a house to lock in historic low interest rates for the next 30 years.  (See my FAQ for disclaimers, including that I am not a financial advisor.)
  1. Huge emphasis on security and privacy. Election-related hacking, including the spearfishing attack on John Podesta’s email, will serve as a major wake-up call to both government and the private sector to get their security act together.  Leaks will fuel major concerns about privacy.  Two-factor authentication using verification codes (e.g., Google Authenticator) will continue to take off as will encrypted communications.  Fear of leaks will also change how people use email and other written electronic communications; more people will follow the sage advice in this quip:

Dance like no one’s watching; E-mail like it will be read in a deposition

  1. In 2015, if you were flirting on Ashley Madison you were more likely talking to a fembot than a person.  In 2016, the same could be said of troll bots.  Bots are now capable of passing the Turing Test.  In 2017, we will see more bots for both good uses (e.g., customer service) and bad (e.g., trolling social media).  Left unchecked by the social media powerhouses, bots could damage social media usage.
  1. Artificial intelligence hits the peak of inflated expectations. If you view Salesforce as the bellwether for hyped enterprise technology (e.g., cloud, social), then the next few years are going to be dominated by artificial intelligence.  I’ve always believed that advanced analytics is not a standalone category, but instead fodder that vendors will build into smart applications.  They key is typically not the technology, but the problem to which to apply it.  As Infer founder Vik Singh said of Jim Gray, “he was really good at finding great problems,” the key is figuring out the best problems to solve with a given technology or modeling engine.  Application by application we will see people searching for the best problems to solve using AI technology.
  1. The IPO market comes back. After a year in which we saw only 13 VC-backed technology IPOs, I believe the window will open and 2017 will be a strong year for technology IPOs.  The usual big-name suspects include firms like Snap, Uber, AirBnB, and SpotifyCB Insights has identified 369 companies as strong 2017 IPO prospects.
  1. Megavendors mix up EPM and ERP or BI. Workday, which has had a confused history when it comes to planning, acquired struggling big data analytics vendor Platfora in July 2016, and seems to have combined analytics and EPM/planning into a single unit.  This is a mistake for several reasons:  (1) EPM and BI are sold to different buyers with different value propositions, (2) EPM is an applications sale, BI is a platform sale, and (3) Platfora’s technology stack, while appropriate for big data applications is not ideal for EPM/planning (ask Tidemark).  Combining the two together puts planning at risk.  Oracle combined their EPM and ERP go-to-market organizations and lost focus on EPM as a result.  While they will argue that they now have more EPM feet on the street, those feet know much less about EPM, leaving them exposed to specialist vendors who maintain a focus on EPM.  ERP is sold to the backward-looking part of finance; EPM is sold to the forward-looking part.  EPM is about 1/10th the market size of ERP.  ERP and EPM have different buyers and use different technologies.  In combining them, expect EPM to lose out.

And, as usual, I must add the bonus prediction that 2017 proves to be a strong year for Host Analytics.  We are entering the year with positive momentum, the category is strong, cloud adoption in finance continues to increase, and the megavendors generally lack sufficient focus on the category.  We continue to be the most customer-focused vendor in EPM, our new Modeling product gained strong momentum in 2016, and our strategy has worked very well for both our company and the customers who have chosen to put their faith in us.

I thank our customers, our partners, and our team and wish everyone a great 2017.

# # #

 

It Ain’t Easy Making Money in Open Source:  Thoughts on the Hortonworks S-1

It took me a week or so to get to it, but in this post I’ll take a dive into the Hortonworks S-1 filing in support of a proposed initial public offering (IPO) of their stock.

While Hadoop and big data are unarguably huge trends driving the industry and while the future of Hadoop looks very bright indeed, on reading the Hortonworks S-1, the reader is drawn to the inexorable conclusion that  it’s hard to make money in open source, or more crassly, it’s hard to make money when you give the shit away.

This is a company that,  in the past three quarters, lost $54M on $33M of support/services revenue and threw in $26M in non-recoverable (i.e., donated) R&D atop that for good measure.

Let’s take it top to bottom:

  • They have solid bankers: Goldman Sachs, Credit Suisse, and RBC are leading the underwriting with specialist support from Pacific Crest, Wells Fargo, and Blackstone.
  • They have an awkward, jargon-y, and arguably imprecise marketing slogan: “Enabling the Data-First Enterprise.”  I hate to be negative, but if you’re going to lose $10M a month, the least you can do is to invest in a proper agency to make a good slogan.
  • Their mission is clear: “to establish Hadoop as the foundational technology of the modern enterprise data architecture.”
  • Here’s their solution description: “our solution is an enterprise-grade data management platform built on a unique distribution of Apache Hadoop and powered by YARN, the next generation computing and resource management framework.”
  • They were founded in 2011, making them the youngest company I’ve seen file in quite some years. Back in the day (e.g., the 1990s) you might go public at age 3-5, but these days it’s more like age 10.
  • Their strategic partners include Hewlett-Packard, Microsoft, Rackspace, Red Hat, SAP, Teradata, and Yahoo.
  • Business model:  “consistent with our open source approach, we generally make the Hortonworks Data Platform available free of charge and derive the predominant amount of our revenue from customer fees from support subscription offerings and professional services.”  (Note to self:  if you’re going to do this, perhaps you shouldn’t have -35% services margins, but we’ll get to that later.)
  • Huge market opportunity: “According to Allied Market Research, the global Hadoop market spanning hardware, software and services is expected to grow from $2.0 billion in 2013 to $50.2 billion by 2020, representing a compound annual growth rate, or CAGR, of 58%.”  This vastness of the market opportunity is unquestioned.
  • Open source purists: “We are committed to serving the Apache Software Foundation open source ecosystem and to sharing all of our product developments with the open source community.”  This one’s big because while it’s certainly strategic and it certainly earns them points within the Hadoop community, it chucks out one of the better ways to make money in open source:  proprietary versions / extensions.  So, right or wrong, it’s big.
  • Headcount:  The company has increased the number of full-time employees from 171 at December 31, 2012 to 524 at September 30, 2014

Before diving into the financials, let me give readers a chance to review open source business models (Wikipedia, Kellblog) if they so desire, before making the (generally true but probably slightly inaccurate) assertion:  the only open source company that’s ever made money (at scale) is Red Hat.

Sure, there have been a few great exits.  Who can forget MySQL selling to Sun for $1B?  Or VMware buying SpringSource for $420M?  Or RedHat buying JBoss for $350M+?  (Hortonworks CEO Rob Bearden was involved in both of the two latter deals.)   Or Citrix buying XenSource for $500M?

But after those deals, I can’t name too many others.  And I doubt any of those companies was making money.

In my mind there are a two common things that go wrong in open source:

  • The market is too small. In my estimation open source compresses the market size by 10-20x.  So if you want to compress the $30B DBMS market 10x, you can still build several nice companies.  However, if you want to compress the $1B enterprise search market by 10x, there’s not much room to build anything.  That’s why there is no Red Hat of Lucene or Solr, despite their enormous popularity in search.    For open source to work, you need to be in a huge market.
  • People don’t renew. No matter which specific open source business model you’re using, the general play is to sell a subscription to <something> that complements your offering.  It might be a hardened/certified version of the open source product.  It might be additions to it that you keep proprietary forever or, in a hardcover/paperback analogy, roll back into the core open source projects with a 24 month lag.  It might be simply technical support.  Or, it might be “admission the club” as one open source CEO friend of mine used to say:  you get to use our extensions, our support, our community, etc.  But no matter what you’re selling, the key is to get renewals.  The risk is that the value of your extensions decreases over time and/or customers become self-sufficient.    This was another problem with Lucene.  It was so good that folks just didn’t need much help and if they did, it was only for a year or so.

So Why Does Red Hat work?

Red Hat uses a professional open source business model  applied to primarily two low-level infrastructure categories:  operating systems and later middleware.   As general rules:

  • The lower-level the category the more customers want support on it.
  • The more you can commoditize the layers below you, the more the market likes it. Red Hat does this for servers.
  • The lower-level the category the more the market actually “wants” it standardized in order to minimize entropy. This is why low-level infrastructure categories become natural monopolies or oligopolies.

And Red Hat set the right price point and cost structure.  In their most recent 10-Q, you can see they have 85% gross margins and about a 10% return on sales.  Red Hat nailed it.

But, if you believe this excellent post by Andreessen Horowitz partner Peter Levine, There Will Never Be Another Red Hat.  As part of his argument Levine reminds us that while Red Hat may be a giant among open source vendors, that among general technology vendors they are relatively small.  See the chart below for the market capitalization compared to some megavendors.

rhat small fish

Now this might give pause to the Hadoop crowd with so many firms vying to be the Red Hat of Hadoop.  But that hasn’t stopped the money from flying in.  Per Crunchbase, Cloudera has raised a stunning $1.2B in venture capital, Hortonworks has raised $248M, and MapR has raised $178M.  In the related Cassandra market, DataStax has raised $190M.  MongoDB (with its own open source DBMS) has raised $231M.  That’s about $2B invested in next-generation open source database venture capital.

While I’m all for open source, disruption, and next-generation databases (recall I ran MarkLogic for six years), I do find the raw amount of capital invested pretty crazy.   Yes, it’s a huge market today.  Yes, it’s exploding as do data volumes and the new incorporation of unstructured data.  But we will be compressing it 10-20x as part of open-source-ization.  And, given all the capital these guys are raising – and presumably burning (after all, why else would you raise it), I can assure you that no one’s making money.

Hortonworks certainly isn’t — which serves as a good segue to dive into the financials.  Here’s the P&L, which I’ve cleaned up from the S-1 and color-annotated.

horton pl

  •  $33M in trailing three quarter (T3Q) revenues ($41.5M in TTM, though not on this chart)
  • 109% growth in T3Q revenues
  • 85% gross margins on support
  • Horrific -35% gross margins on services which given the large relative size of the services business (43% of revenues) crush overall gross margins down to 34%
  • More scarily this calls into question the veracity of the 85% subscription gross margins — I recall reading in the S-1 that they current lack VSOE for subscription support which means that they’ve not yet clearly demonstrated what is really support revenue vs. professional services revenue.  [See footnote 1]
  • $26M in T3Q R&D expense.  Per their policy all that value is going straight back to the open source project which begs the question will they ever see return on it?
  • Net loss of $86.7M in T3Q, or nearly $10M per month

Here are some other interesting tidbits from the S-1:

  • Of the 524 full-time employee as of 9/30/14, there are 56 who are non-USA-based
  • CEO makes $250K/year in base salary cash compensation with no bonus in FY13 (maybe they missed plan despite strong growth?)
  • Prior to the offering CEO owns 6.8% of the stock, a pretty nice percentage, but he was a kind-of a founder
  • Benchmark owns 18.7%
  • Yahoo owns 19.6%
  • Index owns 9.5%
  • $54.9M cash burn from operations in T3Q, $6.1M per month
  • Number of support subscription customers has grown from 54 to 233 over the year from 9/30/13 to 9/30/14
  • A single customer represented went from 47% of revenues for the T3Q ending 9/30/13 down to 22% for the T3Q ending 9/30/14.  That’s a lot of revenue concentration in one customer (who is identified as “Customer A,” but who I believe is Microsoft based on some text in the risk factors.)

Here’s a chart I made of the increase in value in the preferred stock.  A ten-bagger in 3 years.

horton pref

One interesting thing about the prospectus is they show “gross billings,” which is an interesting derived metric that financial analysts use to try and determine bookings in a subscription company.  Here’s what they present:

horton billings

While gross billings is not a bad stab at bookings, the two metrics can diverge — primarily when the duration of prepaid contracts changes.  Deferred revenue can shoot up when sales sells longer prepaid contracts to a given number of customers as opposed to the same-length contract to more of them.  Conversely, if happy customers reduce prepaid contract duration to save cash in a downturn, it can actually help the vendor’s financial performance (they will get the renewals because the customer is happy and not discount in return for multi-year), but deferred revenue will drop as will gross billings.  In some ways, unless prepaid contract duration is held equal, gross billings is more of a dangerous metric than anything else.  Nevertheless Hortonworks is showing it as an implied metric of bookings or orders and the growth is quite impressive.

Sales and Marketing Efficiency

Let’s now look at sales and marketing efficiency, not using the CAC which is too hard to calculate for public companies but using JMP’s sales and marketing efficiency metric = gross profit [current] – gross profit [prior] / S&M expense [prior].

On this metric Hortonworks scores a 41% for the T3Q ended 9/30/14 compared to the same period in 2013.  JMP considers anything above 50% efficient, so they are coming in low on this metric.  However, JMP also makes a nice chart that correlates S&M efficiency to growth and I’ve roughly hacked Hortonworks onto it here:

JMP

I’ll conclude the main body of the post by looking at their dollar-based expansion rate.  Here’s a long quote from the S-1:

Dollar-Based Net Expansion Rate.    We believe that our ability to retain our customers and expand their support subscription revenue over time will be an indicator of the stability of our revenue base and the long-term value of our customer relationships. Maintaining customer relationships allows us to sustain and increase revenue to the extent customers maintain or increase the number of nodes, data under management and/or the scope of the support subscription agreements. To date, only a small percentage of our customer agreements has reached the end of their original terms and, as a result, we have not observed a large enough sample of renewals to derive meaningful conclusions. Based on our limited experience, we observed a dollar-based net expansion rate of 125% as of September 30, 2014. We calculate dollar-based net expansion rate as of a given date as the aggregate annualized subscription contract value as of that date from those customers that were also customers as of the date 12 months prior, divided by the aggregate annualized subscription contract value from all customers as of the date 12 months prior. We calculate annualized support subscription contract value for each support subscription customer as the total subscription contract value as of the reporting date divided by the number of years for which the support subscription customer is under contract as of such date.

This is probably the most critical section of the prospectus.  We know Hortonworks can grow.  We know they have a huge market.  We know that market is huge enough to be compressed 10-20x and still have room to create a a great company.  What we don’t know is:  will people renew?   As we discussed above, we know it’s one of the great risks of open source

Hortonworks pretty clearly answers the question with “we don’t know” in the above quote.  There is simply not enough data, not enough contracts have come up for renewal to get a meaningful renewal rate.  I view the early 125% calculation as a very good sign.  And intuition suggests that — if their offering is quality — that people will renew because we are talking low-level, critical infrastructure and we know that enterprises are willing to pay to have that supported.

# # #

Appendix

In the appendix below, I’ll include a few interesting sections of the S-1 without any editorial comments.

A significant portion of our revenue has been concentrated among a relatively small number of large customers. For example, Microsoft Corporation historically accounted for 55.3% of our total revenue for the year ended April 30, 2013, 37.8% of our total revenue for the eight months ended December 31, 2013 and 22.4% of our total revenue for the nine months ended September 30, 2014. The revenue from our three largest customers as a group accounted for 71.0% of our total revenue for the year ended April 30, 2013, 50.5% of our total revenue for the eight months ended December 31, 2013 and 37.4% of our total revenue for the nine months ended September 30, 2014. While we expect that the revenue from our largest customers will decrease over time as a percentage of our total revenue as we generate more revenue from other customers, we expect that revenue from a relatively small group of customers will continue to account for a significant portion of our revenue, at least in the near term. Our customer agreements generally do not contain long-term commitments from our customers, and our customers may be able to terminate their agreements with us prior to expiration of the term. For example, the current term of our agreement with Microsoft expires in July 2015, and automatically renews thereafter for two successive twelve-month periods unless terminated earlier. The agreement may be terminated by Microsoft prior to the end of its term. Accordingly, the agreement with Microsoft may not continue for any specific period of time.

# # #

We do not currently have vendor-specific objective evidence of fair value for support subscription offerings, and we may offer certain contractual provisions to our customers that result in delayed recognition of revenue under GAAP, which could cause our results of operations to fluctuate significantly from period-to-period in ways that do not correlate with our underlying business performance.

In the course of our selling efforts, we typically enter into sales arrangements pursuant to which we provide support subscription offerings and professional services. We refer to each individual product or service as an “element” of the overall sales arrangement. These arrangements typically require us to deliver particular elements in a future period. We apply software revenue recognition rules under U.S. generally accepted accounting principles, or GAAP. In certain cases, when we enter into more than one contract with a single customer, the group of contracts may be so closely related that they are viewed under GAAP as one multiple-element arrangement for purposes of determining the appropriate amount and timing of revenue recognition. As we discuss further in “Management’s Discussion and Analysis of Financial Condition and Results of Operations—Critical Accounting Policies and Estimates—Revenue Recognition,” because we do not have VSOE for our support subscription offerings, and because we may offer certain contractual provisions to our customers, such as delivery of support subscription offerings and professional services, or specified functionality, or because multiple contracts signed in different periods may be viewed as giving rise to multiple elements of a single arrangement, we may be required under GAAP to defer revenue to future periods. Typically, for arrangements providing for support subscription offerings and professional services, we have recognized as revenue the entire arrangement fee ratably over the subscription period, although the appropriate timing of revenue recognition must be evaluated on an arrangement-by-arrangement basis and may differ from arrangement to arrangement. If we are unexpectedly required to defer revenue to future periods for a significant portion of our sales, our revenue for a particular period could fall below  our expectations or those of securities analysts and investors, resulting in a decline in our stock price

 # # #

We generate revenue by selling support subscription offerings and professional services. Our support subscription agreements are typically annual arrangements. We price our support subscription offerings based on the number of servers in a cluster, or nodes, data under management and/or the scope of support provided. Accordingly, our support subscription revenue varies depending on the scale of our customers’ deployments and the scope of the support agreement.

 Our early growth strategy has been aimed at acquiring customers for our support subscription offerings via a direct sales force and delivering consulting services. As we grow our business, our longer-term strategy will be to expand our partner network and leverage our partners to deliver a larger proportion of professional services to our customers on our behalf. The implementation of this strategy is expected to result in an increase in upfront costs in order to establish and further cultivate such strategic partnerships, but we expect that it will increase gross margins in the long term as the percentage of our revenue derived from professional services, which has a lower gross margin than our support subscriptions, decreases.

 # # #

Deferred Revenue and Backlog

Our deferred revenue, which consists of billed but unrecognized revenue, was $47.7 million as of September 30, 2014.

Our total backlog, which we define as including both cancellable and non-cancellable portions of our customer agreements that we have not yet billed, was $17.3 million as of September 30, 2014. The timing of our invoices to our customers is a negotiated term and thus varies among our support subscription agreements. For multiple-year agreements, it is common for us to invoice an initial amount at contract signing followed by subsequent annual invoices. At any point in the contract term, there can be amounts that we have not yet been contractually able to invoice. Until such time as these amounts are invoiced, we do not recognize them as revenue, deferred revenue or elsewhere in our consolidated financial statements. The change in backlog that results from changes in the average non-cancelable term of our support subscription arrangements may not be an indicator of the likelihood of renewal or expected future revenue, and therefore we do not utilize backlog as a key management metric internally and do not believe that it is a meaningful measurement of our future revenue.

 # # #

We employ a differentiated approach in that we are committed to serving the Apache Software Foundation open source ecosystem and to sharing all of our product developments with the open source community. We support the community for open source Hadoop, and employ a large number of core committers to the various Enterprise Grade Hadoop projects. We believe that keeping our business model free from architecture design conflicts that could limit the ultimate success of our customers in leveraging the benefits of Hadoop at scale is a significant competitive advantage.

 # # #

International Data Corporation, or IDC, estimates that data will grow exponentially in the next decade, from 2.8 zettabytes, or ZB, of data in 2012 to 40 ZBs by 2020. This increase in data volume is forcing enterprises to upgrade their data center architecture and better equip themselves both to store and to extract value from vast amounts of data. According to IDG Enterprise’s Big Data Survey, by late 2014, 31% of enterprises with annual revenues of $1 billion or more expect to manage more than one PB of data. In comparison, as of March 2014 the Library of Congress had collected only 525 TBs of web archive data, equal to approximately half a petabyte and two million times smaller than a zettabyte.

# # #

Footnotes:

[1]  Thinking more about this, while I’m not an accountant, I think the lack of VSOE has the following P&L impact:  it means that in contracts that mix professional services and support they must recognize all the revenue ratably over the contract.  That’s fine for the support revenue, but it should have the effect of pushing out services revenue, artificially depressing services gross margins.  Say, for example you did a $240K that was $120K of each.  The support should be recognized at $30K/quarter.  However, if the consulting is delivered in the first six months it should be delivered at $60K/quarter for the first and second quarters and $0 in the third and fourth.  Since, normally, accountants will take the services costs up-front this should have the effect of hurting services by taking the costs as delivered but by the revenue over a longer period.

[2] See here for generic disclaimers and please note that in the past I have served as an advisor to MongoDB

Thoughts on MongoDB’s Humongous $150M Round

Two weeks ago MongoDB, formerly known as 10gen, announced a massive $150M funding round said to be the largest in the history of databases lead by Fidelity, Altimeter, and Salesforce.com with participation from existing investors Intel, NEA, Red Hat, and Sequoia.  This brings the total capital raised by MongoDB to $231M, making it the best-funded database / big data technology of all time.

What does this mean?

The two winners of the next-generation NoSQL database wars have been decided:  MongoDB and Hadoop.  The faster the runner-ups  figure that out, the faster they can carve off sensible niches on the periphery of the market instead of running like decapitated chickens in the middle. [1]

The first reason I say this is because of the increasing returns (or, network effects) in platform markets.  These effects are weak to non-existent in applications markets, but in core platform markets like databases, the rich invariably get richer.  Why?

  • The more people that use a database, the easier it is to find people to staff teams so the more likely you are to use it.
  • The more people that use a database, the richer the community of people you can leverage to get help
  • The more people that build applications atop a database, the less perceived risk there is in building a new application atop it.
  • The more people that use a database, the more jobs there are around it, which attracts more people to learn how to use it.
  • The more people that use a database, the cooler it is seen to be which in turn attracts more people to want to learn it.
  • The more people that use a database, the more likely major universities are to teach how to use it in their computer science departments.

To see just how strong MongoDB has become in this regard, see here.  My favorite analysis is the 451 Groups’ LinkedIn NoSQL skills analysis, below.

linkedinq31

This is why betting on horizontal underdogs in core platform markets is rarely a good idea.  At some point, best technology or not, a strong leader becomes the universal safe choice.  Consider 1990 to about 2005 where the relational model was the chosen technology and the market a comfortable oligopoly ruled by Oracle, IBM, and Microsoft.

It’s taken 30+ years (and numerous prior failed attempts) to create a credible threat to the relational stasis, but the combination of three forces is proving to be a perfect storm:

  • Open source business models which cut costs by a factor of 10
  • Increasing amounts of data in unstructured data types which do not map well to the relational model.
  • A change in hardware topology to from fewer/bigger computers to vast numbers of smaller ones.

While all technologies die slowly, the best days of relational databases are now clearly behind them.  Kids graduating college today see SQL the way I saw COBOL when I graduated from Berkeley in 1985.  Yes, COBOL was everywhere.  Yes, you could easily get a job programming it.  But it was not cool in any way whatsoever and it certainly was not the future.  It was more of a “trade school” language than interesting computer science.

The second reason I say this is because of my experience at Ingres, one of the original relational database providers which — despite growing from ~$30M to ~$250M during my tenure from 1985 to 1992 — never realized that it had lost the market and needed a plan B strategy.  In Ingres’s case (and with full 20/20 hindsight) there was a very viable plan B available:  as the leader in query optimization, Ingres could have easily focused exclusively on data warehousing at its dawn and become the leader in that segment as opposed to a loser in the overall market.  Yet, executives too often deny market reality, preferring to die in the name of “going big” as opposed to living (and prospering) in what could be seen as “going home.”  Runner-up vendors should think hard about the lessons of Ingres.

The last reason I say this is because of what I see as a change in venture capital. In the 1980s and 1990s VCs used to fund categories and cage-fights.  A new category would be identified, 5-10 companies would get created around it, each might raise $20-$30M in venture capital and then there would be one heck of a cage-fight for market leadership.

Today that seems less true.  VCs seem to prefer funding companies to categories.  (Does anyone know what category Box is in?  Does anyone care about any other vendor in it?)  Today, it seems that VCs fund fewer players, create fewer cage-fights, and prefer to invest much more, much later in a company that appears to be a clear winner.

This, so-called “momentum investing” itself helps to anoint winners because if Box can raise $309M, then it doesn’t really matter how smart the folks at WatchDox are or how clever their technology.

MongoDB is in this enviable position in the next-generation (open source) NoSQL database market.  It has built a huge following, that huge following is attracting a huge-r (sorry) following.  That cycle is attracting momentum investors who see MongoDB as the clear leader.  Those investors give MongoDB $150M.

By my math, if entirely invested in sales [2], that money could fund hiring some 500 sales teams who could generate maybe $400M a year in incremental revenue.  Which would in turn will attract more users.  Which would make the community bigger.  Which would de-risk using the system.  Which would attract more users.

And, quoting Vonnegut, so it goes.

# # #

Disclaimer:  I own shares in several of the companies mentioned herein as well as competitors who are not.  See my FAQ for more.

[1] Because I try to avoid writing about MarkLogic, I should be clear that while one can (and I have) argued that MarkLogic is a NoSQL system, my thinking has evolved over time and I now put much more weight on the open-source test as described in the “perfect storm” paragraph above.  Ergo, for the purposes of this post, I exclude MarkLogic entirely from the analysis because they are not in the open-source NoSQL market (despite the 451’s including them in their skills index).  Regarding MarkLogic, I have no public opinion and I do not view MongoDB’s or Hadoop’s success as definitively meaning either anything either good or bad for them.

[2] Which, by the way, they have explicitly said they will not do.  They have said, “the company will use these funds to further invest in the core MongoDB project as well as in MongoDB Management Service, a suite of tools and services to operate MongoDB at scale. In addition, MongoDB will extend its efforts in supporting its growing user base throughout the world.”

Some Thoughts on Rocket Fuel, Their Voice, and Their Recent S-1

Silicon Valley is a place built by nerds, arguably for nerds, but once big money gets involved there is always tension between the business people and the technical people about control.  Think, for example, of the famous Jobs/Sculley falling-out back in 1985 where the business guy beat the technical guy.

However, in part because of events like that, the business people don’t always win.  In my estimation, there is a sort of “founder pendulum,” which swings with about a ten-year period between one end (where technical founders are “out”) and the other (where they are “in’).

Through most of the 2000s, founders were “out.”  There are two ways to tell this:  (1) you hear incessant griping about “founder issues” at Buck’s and at the Rosewood and (2) you see young PhD’s paired fairly early in the company’s evolution with business-person CEOs, often as a condition of funding.

Somewhere towards the end of the last decade, founders were “in” again.  This  makes me happy because I think engineers and scientists are the soul of Silicon Valley.  That’s why I had so much fun on the board of Aster Data.  And it’s why I like companies like Rocket Fuel.

Rocket Fuel was co-founded by Stanford computer science PhD George John and two fellow Yahoo colleagues in 2008.  John remains its CEO today.  I met him during my year-off in 2011 and was impressed, so I’ve kept an eye on the company ever since.

During the interim, the thing I most noticed about Rocket Fuel was its corporate personality.  Like Splunk, they do a great job of having a strong corporate voice.  Let’s look at some of the culture and communications that are part of this voice.

  • “The rocket scientists behind Rocket Fuel.”  (Turns out John actually worked for a while at NASA.)
  • “In 2008, a group of data savants came together.”
  • “Rocket Fuel is bringing hardcore science to the art of marketing.”
  • “Rocket Fuel has great machine-learning scientists”
  • Jobs titles like “Rocket Scientist” and “Chief Love Officer.”
  • A professorial founder with a great TEDx speech.
  • Strong recruiting videos on culture and science.  “Geek cult.”
  • The launching of (client-labelled) weather balloons from the Nevada desert at a company event.
  • A “nerdy, but loveable” culture (straight from the S-1 and beats “don’t be evil” any day in my book).
  • And, of course, a great puzzle recruiting billboard

rocket-fuel-palindrome

I know that many Silicon Valley companies have odd job titles, geeky events, nerdy billboards, and a focus on recruiting great engineers.  Somehow, however, to me, Rocket Fuel comes off as both more mature and more authentic in this race.  These aren’t geeks trying to look cool, playing sand volleyball, and partying till dawn; these are geeks being geeks, and quite happily so.

I noticed when the company filed for an IPO back in August, but didn’t have time to dig into the (amended) S-1 until now.

Here are some takeaways:

  • Revenue of $44.6M and $106.6M in 2011 and 2012, 139% growth
  • Revenue of $39.6M and $92.6M in 1H12 and 1H13, 133% growth
  • Gross profit of $42.9M in 1H13, up from $17.6M in 1H12, with gross margin of 46%
  • R&D expense of $6.1M in 1H13, up from $1.5M in 1H12 and representing 7% of sales
  • S&M expense of $34.6M in 1H13, up from $15.5M in 1H12 and representing 37% of sales
  • G&A expense of $10.9M in 1H13, up from $2.6M in 1H12, and representing 11% of sales.
  • Operating loss of $8.8M in 1H13, up from $2.1M in 1H12, and representing 9.5% of sales
  • EPS of ($1.43) in 1H13, up from ($0.31) in 1H12

So the financial picture looks pretty clear:  really impressive growth, no profits.  Let’s take a quick look at how things are scaling.

rocket fuel scaling

  • Revenue growth is decelerating slightly as the more recent half-over-half (HoH) growth rate is slightly lower than the YoY
  • R&D expense is way up, growing 307% HoH.
  • S&M expense is up, but is scaling slight slower than revenue (as one generally likes) at 123%
  • G&A expense is way up, growing 319% HoH.  Let’s assume a lot of that is IPO-related.
  • Total operating expenses are growing at 163% versus revenue at 134%.  Usually, you like it the other way around.

The risk factors, which run nearly 20 pages, look reasonably standard and include risks from being able to file as an “emerging growth company,” implying more onerous disclosure, and the potential inability to comply, later.

The most interesting risks related to user rejection of 3rd party cookies, European Union laws, and potential “do not track” standards.  They cite customer concentration as a risk, but their top 20 customers in 2011 and 2012 accounted for (only) 39% and 38% of revenues.  They also cite access to inventory, which makes sense a threat to anyone in this business, particularly in the case of social media and Facebook FBX.

  • As of 6/30/13, the company had about 405 employees.
  • Prior to the IPO, the company has raised about $75M in capital.
  • The company will have 32.5M shares outstanding after the IPO.
  • The increase in the fair market value (FMV) of the stock, as shown in the option grant history table, is impressive.  That’s an 8.9x over the 18 months shown.

fmv rocket fuel

  • After the IPO, the three cofounders will own 10.7%, 9.0%, and 3.9% of the company, Mohr Davidow will own 35.1%, and Nokia will own 8.3% (assuming no exercise of over-allotment).

As per my S-1 tradition, I never get all the way through.  I stopped on page 125 of about what appears to be 185 or so pages.  If you want to dig through the rest of it, you can find the S-1 here.

In conclusion, I will say that I’m an enterprise software guy and don’t know a whole lot about the digital advertising business.  I believe that Rocket Fuel is both a middleman and an arbitrage play, that middlemen can sometimes get squeezed, and that the name of the game in arbitrage is consistently outsmarting the other guys.  So, in reality, I believe there’s more to the geek culture than simple fun:  it’s critical to winning in the strategy.

How this will end?  I don’t know.  Do I think George John can build one heck of a team?  You betcha.  Do the big guys against whom they compete have people as smart as Rocket Fuel’s?  Probably.  Are the big guys’ best-and-brightest working on this particular problem?  I don’t know.

(Often, in my experience, that is the difference.  It’s not whether company X has people as smart as startup Y; it’s where they’ve chosen to deploy them.  Even Facebook and Google have a bottom 20%.)

I do know that programmatic video advertising company Adapt.tv recently sold for $405M to AOL and that YuMe had to reduce its IPO pricing, but then got off to a strong first day in the public markets (only to gradually drop and then rebound).  Are these clouds or silver linings?  I’m inclined to think the latter.

I hope things go well for the company going forward and congratulations to them for all the success they’ve had thus far.  #revengeofthenerds

See my FAQ for disclaimers.  I am not financial analyst.  I do not recommend buying, selling, or holding any given stock. I may directly or indirectly own shares in the companies about which I blog.

So You Wanna Be a Data Scientist

I’ve often said that “data science” is the new “plastics,” hearkening back to that famous scene in The Graduate where a neighbor gives cryptic one-word career advice to the young graduate Benjamin Braddock, portrayed by Dustin Hoffman.

I’ve told my own son data science numerous times as well.  (Yes, that’s to the one in college, not grade school, but I suppose it’s never too early to start.)

The question this begs is how to become a data scientist.  Few schools have a data science major, per se, but many schools are starting to offer related majors at both the undergraduate and graduate level.  Some, like Northwestern, even do this online.

The other day, I found this great post on the subject from Zipfian Academy  and I not only tweeted it on the spot, but wanted to blog about it here.

Here’s the introduction:

There are plenty of articles and discussions on the web about what data science is, what qualities define a data scientist, how to nurture them, and how you should position yourself to be a competitive applicant. There are far fewer resources out there about the steps to take in order to obtain the skills necessary to practice this elusive discipline. Here we will provide a collection of freely accessible materials and content to jumpstart your understanding of the theory and tools of Data Science.

The full post is here.

Interview by SandHill.com on Big Data, Cloud Computing, and the Future of IT

[This is a re-post of a recent interview with me, authored by Darren Cunningham of Informatica.  The post originally appeared on SandHill.com where Darren writes a column on Cloud Computing.]

—-

The Cloud in Action

Big Data, Cloud Computing and Industry Perspectives with Dave Kellogg

BY Darren Cunningham

I had the pleasure of working with Dave Kellogg early in my marketing career and continue to learn from him as a regular subscriber to his popular blog, Kellblog. A seasoned Silicon Valley executive, Dave has been a board member (Aster Data), CEO (MarkLogic), CMO (Business Objects) and VP of Marketing (Versant and Ingres). I recently sat down with Dave to discuss industry trends. As always, he didn’t hold back.

Dave, you’ve written a lot about “Big Data” on your blog. Why is it such a hot topic in the world of data management?

First I think Big Data is a hot topic because it represents the first time in about 30 years that people are rethinking databases. Literally, since about 1980 people haven’t had to think much about databases. If you were an SMB, you went SQL server; if you were enterprise, you’d go Oracle or IBM depending on your enterprise preferences. But in terms of technology, to paraphrase Henry Ford: any color you want, as long it’s relational.

Overall, I think Big Data is hot for three reasons:

  • Major new innovation is finally happening with databases for the first time in three decades.
  • Hardware architectures have changed — people want to scale horizontally like Google.
  • We are experiencing a serious explosion in the amount of data people are analyzing and managing. Machine-generated data, the exhaust of the Web, is driving a lot of it.

I think Big Data is challenging on many fronts from the cool (e.g., analytics and query optimization), to the practical (e.g., horizontal scaling), to the mundane (e.g., backup and recovery).

What’s the intersection with Cloud Computing?

I think when people say cloud computing, they mean one of several things:

  • SaaS: The use of software applications or platforms as services.
  • Dynamic scaling: My favorite example of this is Britain’s Got Talent, which uses Cassandra. Most of the time they have nothing to do. Then one night half the country is trying to vote for their favorite contestants.
  • Service orientation: The ability to weave together applications by calling various cloud services — in effect using a series of cloud services as a platform on which to build applications.

I think Big Data intersects with cloud in several ways. First, the people running cloud services are dealing with Big Data problems. They are hosting thousands of customers’ databases and generating log records from hundreds of thousands of users. I also think Big Data analytics are very dynamic loads. One minute you want nothing, then suddenly you need to throw 100 servers at a complex problem for several hours.

How do you see these trends changing the role of IT?

I think corporate IT is constantly evolving because smart corporations want their internal resources focused on activities that they can’t buy elsewhere and that generate competitive advantage for the business.

IT used to buy and run computers. Then they used to build and run applications. Then they focused on weaving together packaged applications. Going forward, they will focus on tightly integrating cloud-based services. They will also continue to focus on company-proprietary analytics used to gain competitive advantage.

The other trend driving IT is consumerization. The Web sets expectations for functionality, user interface and quality that corporate IT must meet with internal systems. The bar has gone way up – people won’t tolerate old-school ERP-style interfaces at work when they’re used to Facebook or Yelp.

What does that mean for technology sales and marketing?

If Mr. McGuire in The Graduate were dishing out advice today, instead of saying “plastics,” he’d say “data science.” More and more companies will use data scientists to analyze their business and drive tactical operations. First you need to gather a whole bunch of data about your operations and customers. Then you need to throw world-class data analysts at it to get business value and to be sure you don’t draw false conclusions – e.g., mixing causality with correlation.

Today, most companies have their sales departments on salesforce.com. Leading marketing departments are on Marketo or Eloqua, but most marketers still don’t have much technology backing them. Going forward you will see a whole class of analytics applications vendors providing advanced analytics for Salesforce (e.g., Cloud9, Good Data) and the marketing automation vendors will move beyond lead incubation into providing overall marketing suites. I expect Marekto or Eloqua to try to do for the chief marketing officer what SuccessFactors did for the chief people officer – and if they don’t, then there’s a real opportunity for someone else.

Speaking of all things cloud, you often write about Silicon Valley trends. How would you characterize what’s going on in the market right now?

From my perception, the Silicon Valley innovation engine is running full out. Top VCs are raising new funds. I meet a few new startups every day. Of late, I’ve met fascinating companies in next-generation business intelligence, analytics, Big Data, social media monitoring and exploitation and Web application development. One of the more interesting things I’ve found is a VC fund dedicated to big data – IA Ventures (in New York). When I heard about them, I thought: oh, lots of Big Data infrastructure and platform technologies. Then I spent some time and realized that most of their portfolio is about exploiting new Big Data infrastructure technologies via vertical applications. That was really interesting.

People will debate whether we’re in a mini tech bubble or a social networking-specific bubble. Who knows? I just read an article in the The Wall Street Journal that argues $140B valuation for Facebook is realistic, and it was fairly convincing. So you can debate the bubble issue but you can’t debate that the IPO market has been closed for a long time. Now it is starting to open, and that’s a huge change in Silicon Valley.

Entrepreneurs have historically dreamed of creating $1B independent companies. I’d say for most of the last decade they’ve dreamed of getting bought for 5-10x revenues. Michael Arrington had a great quote a while back saying that “an entire generation of entrepreneurs [has been lost] building dipshit companies that sell to Google for $25M.” I think those days are over. When the IPO window opens, people dream of building stand-alone companies.

What advice do you have for both entrepreneurs and IT veterans?

Don’t build or run things that you can buy or rent. If you follow that mantra, you will follow market trends, and always stay at the right stack-layer to ensure that you are adding value as opposed to leveraging old skill sets. While you may know how to run a Big Data center, you can now rent time in one more cost-effectively. So either go work for a company that runs data centers (e.g., Equinix) if that’s your pleasure, or go leverage the people who do. Put differently, don’t be static. If you’re still using skills you learned 10 years ago, make sure that you’re not teeing yourself up to get left behind.

As always, great advice, Dave! Thank you.

Darren Cunningham is VP of Marketing for Informatica Cloud.

[Notes:  Minor changes made from the SandHill post.  I added emphasis via bolding and I corrected the attribution of the famous lines “plastics” from The Graduate.  It was not Mr. Robinson, but Mr. McGuire, who said it.]

Teradata to Acquire Aster Data

Since I’m on the board of Aster Data I will refrain from editorial on this announcement and simply say congratulations to Teradata on buying a great company and congratulations to Aster Data, its founders Mayank Bawa, Tasso Argyros, and George Candea, its investors, and its employees on what I view as a successful win/win outcome.