Category Archives: Cloud

SaaS Product Power Breakfast with Evan Kaplan of Influx Data

Please join us for tomorrow’s SaaS Product Power Breakfast, Thursday 6/24 at 8am Pacific.  Our guest is veteran technology executive Evan Kaplan, CEO of Influx Data, makers of the open-source, time-series database InfluxDB.

Our theme for tomorrow’s episode is how to manage the transition from traditional open source to true cloud native, something relatively few companies have done, and a transition that Evan has overseen at Influx Data.

We’ll cover questions including:

  • A primer on the traditional open source model
  • What it means to be true cloud native
  • How to approach the transition to true cloud native
  • Perils and pitfalls in the transition
  • Organizational (and people) change in the transition
  • Licensing implications, including protecting the open source from cloud hyperscalers and while trying not to alienate the traditional open source community

Influx Data is a category leader that has raised about $120M from top-tier investors.  Evan has a spectacular background, having been founder/CEO of Aventail for about a decade, CEO of iPass for half a decade, the member of numerous boards, and having serving 5+ years at Influx Data.  I’m super excited to have him on the show.  See you there!

Congratulations to Nuxeo on its Acquisition by Hyland

It feels like the just the other day when I met a passionate French entrepreneur in the bar on the 15th floor of the Hilton Times Square to discuss Nuxeo.  I remember being interested in the space, which I then viewed as next-generation content management (which, by the way, seemed extraordinarily in need of a next generation) and today what we’d call a content services platform (CSP) — in Nuxeo’s case, with a strong digital asset management angle.

I remember being impressed with the guy, Eric Barroca, as well.  If I could check my notebook from that evening, I’m sure I’d see written:  “smart, goes fast, no BS.”  Eric remains one of the few people who — when he interrupts me saying “got it” — that I’m quite sure that he does.

To me, Nuxeo is a tale of technology leadership combined with market focus, teamwork, and leadership.  All to produce a great result.

Congrats to Eric, the entire team, and the key folks I worked with most closely during my tenure on the board:  CMO/CPO Chris McGlaughlin, CFO James Colquhoun, and CTO Thierry Delprat.

Thanks to the board for having me, including Christian Resch and Nishi Somaiya from Goldman Sachs, Michael Elias from Kennet, and Steve King.  It’s been a true pleasure working with you.

My Appearance on DisrupTV Episode 100

Last week I sat down with interviewers Doug Henschen, Vala Afshar, and a bit of Ray Wang (live from a 777 taxiing en route to Tokyo) to participate in Episode 100 of DisrupTV along with fellow guests DataStax CEO Billy Bosworth and big data / science recruiter Virginia Backaitis.

We covered a full gamut of topics, including:

  • The impact of artificial intelligence (AI) and machine learning (ML) on the enterprise performance management (EPM) market.
  • Why I joined Host Analytics some 5 years ago.
  • What it’s like competing with Oracle … for basically your entire career.
  • What it’s like selling enterprise software both upwind and downwind.
  • How I ended up on the board of Alation and what I like about data catalogs.
  • What I learned working at Salesforce (hint:  shoshin)
  • Other lessons from BusinessObjects, MarkLogic, and even Ingres.

DisrupTV Episode 100, Featuring Dave Kellogg, Billy Bosworth, Virginia Backaitis from Constellation Research on Vimeo.

 

Why has Standalone Cloud BI been such a Tough Slog?

I remember when I left Business Objects back in 2004 that it was early days in the cloud.  We were using Salesforce internally (and one of their larger customers at the time) so I was familiar with and a proponent of cloud-based applications, but never felt great about BI in the cloud.  Despite that, Business Objects and others were aggressively ramping on-demand offerings all of which amounted to pretty much nothing a few years later.

Startups were launched, too.  Specifically, I remember:

  • Birst, née Success Metrics, and founded in 2004 by Siebel BI veterans Brad Peters and Paul Staelin, which was originally supposed to be vertical industry analytic applications.
  • LucidEra, founded in 2005 by Salesforce and Siebel veteran Ken Rudin (et alia) whose original mission was to be to BI what Salesforce was to CRM.
  • PivotLink, which did their series A in 2007 (but was founded in 1998), positioned as on-demand BI and later moved into more vertically focused apps in retail.
  • GoodData, founded in 2007 by serial entrepreneur Roman Stanek, which early on focused on SaaS embedded BI and later moved to more of a high-end enterprise positioning.

These were great people — Brad, Ken, Roman, and others were brilliant, well educated veterans who knew the software business and their market space.

These were great investors — names like Andreessen Horowitz, Benchmark, Emergence, Matrix, Sequoia, StarVest, and Tenaya invested over $300M in those four companies alone.

This was theoretically a great, straightforward cloud-transformation play of a $10B+ market, a la Siebel to Salesforce.

But of the four companies named above only GoodData is doing well and still in the fight (with a high-end enterprise platform strategy that bears little resemblance to a straight cloud transformation play) and the three others all came to uneventful exits:

So, what the hell happened?

Meantime, recall that Tableau, founded in 2003, and armed in its early years with a measly $15M in venture capital, and with an exclusively on-premises business model, literally blew by all the cloud BI vendors, going public in May 2013 and despite the stock being cut by more than half since its July 2015 peak is still worth $4.2B today.

I can’t claim to have the definitive answer to the question I’ve posed in the title.  In the early days I thought it was related to technical issues like trust/security, trust/scale, and the complexities of cloud-based data integration.  But those aren’t issues today.  For a while back in the day I thought maybe the cloud was great for applications, but perhaps not for platforms or infrastructure.  While SaaS was the first cloud category to take off, we’ve obviously seen enormous success with both platforms (PaaS) and infrastructure (IaaS) in the cloud, so that can’t be it.

While some analysts lump EPM under BI, cloud-based EPM has not had similar troubles.  At Host, and our top competitors, we have never struggled with focus or positioning and we are all basically running slightly different variations on the standard cloud transformation play.  I’ve always believed that lumping EPM under BI is a mistake because while they use similar technologies, they are sold to different buyers (IT vs. finance) and the value proposition is totally different (tool vs. application).  While there’s plenty of technology in EPM, it is an applications play — you can’t sell it or implement it without domain knowledge in finance, sales, marketing or whatever domain for which you’re building the planning system.  So I’m not troubled to explain why cloud EPM hasn’t been a slog while cloud BI absolutely has been.

My latest belief is that the business model wasn’t the problem in BI.  The technology was.  Cloud transformation plays are all about business model transformation.  On-premises applications business models were badly broken:  the software cost $10s of millions to buy and $10s of millions more to implement (for large customers).  SMBs were often locked out of the market because they couldn’t afford the ante.  ERP and CRM were exposed because of this and the market wanted and needed a business model transformation.

With BI, I believe, the business model just wasn’t the problem.  By comparison to ERP and CRM, it was fraction of the cost to buy and implement.  A modest BusinessObjects license might have cost $150K and less than that to implement.  That problem was not that BI business model was broken, it was that the technology never delivered on the democratization promise that it made.  Despite shouting “BI for the masses” in 1995, BI never really made it beyond the analyst’s desk.

Just as RDBMS themselves failed to deliver information democracy with SQL (which, believe it or not, was part of the original pitch — end users could write SQL to answer their own queries!), BI tools — while they helped enable analysts — largely failed to help Joe User.  They weren’t easy enough to use.  They lacked information discovery.  They lacked, importantly, easy-yet-powerful visualization.

That’s why Tableau, and to a lesser extent Qlik, prospered while the cloud BI vendors struggled.  (It’s also why I find it profoundly ironic that Tableau is now in a massive rush to “go cloud” today.)  It’s also one reason why the world now needs companies like Alation — the information democracy brought by Tableau has turned into information anarchy and companies like Alation help rein that back in (see disclaimers).

So, I think that cloud BI proved to be such a slog because the cloud BI vendors solved the wrong problem. They fixed a business model that wasn’t fundamentally broken, all while missing the ease of use, data discovery, and visualization power that both required the horsepower of on-premises software and solved the real problems the users faced.

I suspect it’s simply another great, if simple, lesson is solving your customer’s problem.

Feel free to weigh in on this one as I know we have a lot of BI experts in the readership.

Survivor Bias in Churn Calculations: Say It’s Not So!

I was chatting with a fellow SaaS executive the other day and the conversation turned to churn and renewal rates.  I asked how he calculated them and he said:

Well, we take every customer who was also a customer 12 months ago and then add up their ARR 12 months ago and add up their ARR today, and then divide today’s ARR by year-ago ARR to get an overall retention or expansion rate.

Well, that sounds dandy until you think for a minute about survivor bias, the often inadvertent logical error in analyzing data from only the survivors of a given experiment or situation.  Survivor bias is subtle, but here are some common examples:

  • I first encountered survivor bias in mutual funds when I realized that look-back studies of prior 5- or 10-year performance include only the funds still in existence today.  If you eliminate my bogeys I’m actually an below-par golfer.
  • My favorite example is during World War II, analysts examined the pattern of anti-aircraft fire on returning bombers and argued to strengthen them  in the places that were most often hit.  This was exactly wrong — the places where returning bombers were hit were already strong enough.  You needed to reinforce them in the places that the downed bombers were hit.

So let’s turn back to churn rates.  If you’re going to calculate an overall expansion or retention rate, which way should you approach it?

  1. Start with a list of customers today, look at their total ARR, and then go compare that to their ARR one year ago, or
  2. Start with a list of customers from one year ago and look at their ARR today.

Number 2 is the obvious answer.  You should include the ARR from customers who choose to stop being customers in calculating an overall churn or expansion rate.  Calculating it the first way can be misleading because you are looking at the ARR expansion only from customers who chose to continue being customers.

Let’s make this real via an example.

survivor bias

The ARR today is contained in the boxed area.  The survivor bias question comes down to whether you include or exclude the orange rows from year-ago ARR.  The difference can be profound.  In this simple example, the survivor-biased expansion rate is a nice 111%.  However, the non-biased rate is only 71% which will get you a quick “don’t let the door hit your ass on the way out” at most VCs.  And while the example is contrived, the difference is simply one of calculation off identical data.

Do companies use survivor-biased calculations in real life?  Let’s look at my post on the Hortonworks S-1 where I quote how they calculate their net expansion rate:

We calculate dollar-based net expansion rate as of a given date as the aggregate annualized subscription contract value as of that date from those customers that were also customers as of the date 12 months prior, divided by the aggregate annualized subscription contract value from all customers as of the date 12 months prior.

When I did my original post on this, I didn’t even catch it.  But therein lies the subtle head of survivor bias.

# # #

Disclaimers:

  • I have not tracked the Hortonworks in the meantime so I don’t know if they still report this metric, at what frequency, how they currently calculate it, etc.
  • To the extent that “everyone calculates it this way” is true, then companies might report it this way for comparability, but people should be aware of the bias.  One approach is to create a present back-looking and a past forward-looking metric and show both.
  • See my FAQ for additional disclaimers, including that I am not a financial analyst and do not make recommendations on stocks.