Category Archives: demandgen

Marketing Targeting: It’s Not Just Where You Fish, It’s What You Put on the Hook

Back in the day I was taught that marketers do three things, memorized via the acronym STP:  segment, target, position.

  • Divide the audience into different segments.  For example, dividing consumers by demographics or dividing businesses by size or industry.
  • Select the segments that the company wishes to target for its marketing.  For example, choosing small and medium businesses (SMB) as your target segment.
  • Position the product in the mind of the consumer, ideally in a unique way, providing differentiation and/or benefit [1].  For example, positioning your offering for the SMB segment as easy to deploy and inexpensive to own.

I’ve always thought of targeting as the answer to the question, “what list do I want to buy?”  Do I want buy a list of marketing directors at SMBs or a list of chief data officers (CDOs) at Fortune 1000 companies?

The list-buying metaphor extends nicely to events (what shows do these people attend), PR (what publications do they read), AR (to which influencers do they listen), some forms of digital advertising (e.g., LinkedIn where you have considerable targeting control), if not Google (where you don’t [2]).

For many people, that’s where the targeting discussion ends.  When most people think of targeting they think of where on the lake they want to fish.

While an angler would never forget this, marketers too often miss that what you put on the hook matters, too.  Fishing in the same part of the lake, an angler might put on crayfish for largemouth bass, worms for rainbow trout, or stinkbait for catfish.

It’s not just about who you’re speaking to; it’s about what you tell them — the bait, if you will, that you put on the hook.

Perhaps this is too metaphorical, so let’s take an example — imagine we sell financial planning and budgeting software to businesses and our target segment is small businesses between $0M to $50M in revenue.  Via some marketing channels we can communicate only to people in this segment, but through a lot of other important channels (e.g., Google Ads, SEO, content marketing), we cannot.  So we need to rely not only on our targeting, but our message, to control who we bring into the lead funnel.

Consider these two messages:

  • Plan faster and more efficiently with OurTool
  • End the misery and mistakes of planning on Excel

The first message pitches a generic benefit of a planning system and is likely to attract many different types of fish.  The second message specifically addresses the pains of planning on Excel.  Who plans on Excel?  Well, smaller businesses primarily [3].  So the message itself helps us filter for the kind of companies we want to attract.

Now, let’s pretend we’re targeting large enterprises, instead.  Consider these two messages.

  • End the misery and mistakes of planning on Excel
  • Integrate your sales and financial planning

The first message, as discussed above, is going to catch a lot of small fish.  The second message is about a problem that only larger organizations face — small companies are just trying to get a budget done, whereas larger ones are trying to get a more holistic view.  The second message far better attracts the enterprise target that you want.  As would, for example, a message about the pain and expense of budgeting on Hyperion.

I’ll close in noting that marketers who measure themselves by the number of fish they catch [4] — as opposed to the conversion of those fish into customers — will often resist the more focused message because you won’t set attendance records with the more selective bait.  So, as you perform your targeting, always remember three things:

  1. It’s about where you put the boat
  2. It’s also about the bait you put on the hook
  3. It’s not about the number of fish you catch, but the number of the right fish that you catch.

# # #

Notes

[1] The decision to emphasize differentiation or benefit is covered in The Two Archetypal Marketing Messages:  “Bags Fly Free” and “Soup is Good Food.”

[2] In a B2B sense, at least.

[3] Amazingly, a lot of large and very large businesses also plan on Excel, but let’s not confuse the exception for the rule or the point of the example — different messages attract different buyers.

[4] Either literally by putting KPIs on high-funnel metrics such as MQLs or, more subtly and more dangerously, by getting too much inner joy from high-funnel metrics (“look how many people came to our webinar!”)

Should Your SDRs Look for Projects or Pain?

There’s a common debate out there, it goes something like this:

“Our sales development representatives (SDRs) need to look for pain: finding business owners with a problem and the ability to get budget to go fix it.”

Versus:

“No, our SDRs need to look for projects: finding budgeted projects where our software is needed, and ideally an evaluation in the midst of being set up.”

Who’s right?

As once was once taught to me, the answer to every marketing question is “it depends” and the genius is knowing “on what.”  This question is no exception.  The answer is:  it depends.  And on:

  • Whether you’re in a hot or cold market.
  • Whether your SDR is working an inbound or outbound motion

I first encountered this problem decades ago rolling out Solution Selling (from which sprung the more modern Customer-Centric Selling).  Solution Selling was both visionary and controversial.  Visionary in that it forced sales to get beyond selling product (i.e., selling features, feeds, and speeds) instead focusing on the benefits of what the product did for the customer.  Controversial in that it uprooted traditional sales thinking — finding an existing evaluation was bad, argued Bosworth, because it meant that someone else had already created the customer’s vision for a solution and thus the buying agenda would be biased in their favor.

While I think Bosworth made an interesting point about the potential for wired evaluation processes and requests for proposal (RFPs), I never took him literally.  Then I met what I could only describe as “fundamentalist solution seller” in working on the rollout.

“OK, we we’re working on lead scoring, and here’s what we’re going to do:  10 points for target industry, 10 points for VP title or above, 10 points for business pain, -10 points for existing evaluation, and -10 points for assigned budget.”

Wut?

I’d read the book so I knew what Bosworth said, but, but he was just making a point, right?  We weren’t actually going to bury existing evaluations in the lead pile, were we?  All because the customer knew they wanted to buy in our category and had the audacity to start an evaluation process and assign budget before talking to us?

That would be like living in the Upside Down.  We couldn’t possibly be serious?  Such is the depth of religion often associated with the rollout of a new sales methodology.

Then I remembered the subtitle of the book (which everyone seems to forget).

“Creating buyers in difficult selling markets.”  This was not a book written for sellers in Geoffrey Moore’s tornado, it was book for written for those in difficult markets, tough markets, markets without a lot of prospects, i.e., cold markets.  In a cold market, no one’s out shopping so you have no choice but find potential buyers in latent pain, inform them a solution exists, and try to sell it to them.

Example:  baldness remedies.  Sure, I’d rather not be bald, but I’m not out shopping for solutions because I don’t think they exist.  This is what solution sellers call latent pain.  Thus, if you’re going to sell me a baldness remedy, you’re going need to find me, get my attention, remind me that I don’t like being bald, then — and this is really hard part — convince me that you have a solution that isn’t snake oil.  Such is life in cold markets.  Go look for pain because if you look for buyers you aren’t going to find many.

However, in hot markets there are plenty of buyers, the market has already convinced buyers they need to buy a product, so the question sellers should focus on is not “why buy one” but instead, “why buy mine.”

I’m always amazed that people don’t first do this high-level situation assessment before deciding on sales and marketing messaging, process, and methodology.  I know it’s not always black & white, so the real question is:  to what extent are our buyers already shopping vs. need to be informed about potential benefits before considering buying?  But it’s hard to devise any strategy without having an answer to it.

So, back to SDRs.

Let’s quickly talk about motion.  While SDR teams may be structured in many ways (e.g., inbound, outbound, hybrid), regardless of team structure there are two fundamentally different SDR motions.

  • Inbound.  Following-up with people who have “raised their hand” and shown interest in the company and its offerings.  Inbound is largely a filtering and qualification exercise.
  • Outbound.  Targeting accounts (and people within them) to try and mutate them into someone interested in the company and its offerings.  In other words, stalking:  we’re your destiny (i.e., you need to be our customer) and you just haven’t figured it out, yet.

In hot markets, you can probably fully feed your salesforce with inbound.  That said, many would argue that, particularly as you scale, you need to be more strategic and start picking your customers by complementing inbound with a combination of named-account selling, account-based marketing, and outbound SDR motion.

In cold markets, the proverbial phone never rings.  You have no choice but to target buyers with power, target pains, and convince them your company can solve them.

Peak hype-cycle markets can be confusing because there’s plenty of inbound interest, but few inbound buyers (i.e., lots of tire-kickers) — so they’re actually cold markets disguised as hot ones.

Let’s finally answer the question:

  • SDRs in hot markets should look for projects.
  • SDRs in cold markets should look for pain.
  • SDRs in hot markets at companies complementing inbound with target-account selling should look for pain.

 

Why Every Startup Needs an Inverted Demand Generation Funnel, Part III

In part I of this three-part series I introduced the idea of an inverted funnel whereby marketing can derive a required demand generation budget using the sales target and historical conversion rates.  In order to focus on the funnel itself, I made the simplifying assumption that the company’s new ARR target was constant each quarter. 

In part II, I made things more realistic both by quarterizing the model (with increasing quarterly targets) and accounting for the phase lag between opportunity generation and closing that’s more commonly known as “the sales cycle.”  We modeled that phase lag using the average sales cycle length.  For example, if your average sales cycle is 90 days, then opportunities generated in 1Q19 will be modeled  as closing in 2Q19 [1].

There are two things I dislike about this approach:

  • Using the average sales cycle loses information contained in the underlying distribution.  While deals on average may close in 90 days, some deals close in 30 while others may close in 180. 
  • Focusing only on the average often leads marketing to a sense of helplessness. I can’t count the number of times I have heard, “well, it’s week 2 and the pipeline’s light but with a 90-day sales cycle there is nothing we can do to help.”  That’s wrong.  Some deals close more quickly than others (e.g., upsell) so what can we do to find more of them, fast [2].

As a reminder, time-based close rates come from doing a cohort analysis where we take opportunities created in a given quarter and then track not only what percentage of them eventually close, but when they close, by quarter after their creation. 

This allows us to calculate average close rates for opportunities in different periods (e.g., in-quarter, in 2 quarters, or cumulative within 3 quarters) as well an overall (in this case, six-quarter) close rate, i.e., the cumulative sum.  In this example, you can see an overall close rate of 18.7% meaning that, on average, within 6 quarters we close 18.7% of the opportunities that sales accepts.  This is well within what I consider the standard range of 15 to 22%.

Previously, I argued this technique can be quite useful for forecasting; it can also be quite useful in planning.  At the risk of over-engineering, let’s use the concept of time-based close rates  to build an inverted funnel for our 2020 marketing demand generation plan.

To walk through the model, we start with our sales targets and average sales price (ASP) assumptions in order to calculate how many closed opportunities we will need per quarter.  We then drop to the opportunity sourcing section where we use historical opportunity generation and historical time-based close rates to estimate how many closed opportunities we can expect from the existing (and aging) pipeline that we have already generated.  Then we can plug our opportunity generation targets from our demand generation plan into the model (i.e., the orange cells).  The model then calculates a surplus or (gap) between the number of closed opportunities we need and those the model predicts. 

I didn’t do it in the spreadsheet, but to turn that opportunity creation gap into ARR dollars just multiply by the ASP.  For example, in 2Q20 this model says we are 1.1 opportunities short, and thus we’d forecast coming in $137.5K (1.1 * $125K) short of the new ARR plan number.  This helps you figure out if you have the right opportunity generation plan, not just overall, but with respect to timing and historical close rates.

When you discover a gap there are lots of ways to fix it.  For example, in the above model, while we are generating enough opportunities in the early part of the year to largely achieve those targets, we are not generating enough opportunities to support the big uptick in 4Q20.  The model shows us coming in 10.8 opportunities short in 4Q20 – i.e., anticipating a new ARR shortfall of more than $1.3M.  That’s not good enough.  In order to achieve the 4Q20 target we are going to need to generate more opportunities earlier in the year.

I played with the drivers above to do just that, generating an extra 275 opportunities across the year generating surpluses in 1Q20 and 3Q20 that more than offset the small gaps in 2Q20 and 4Q20.  If everything happened exactly according to the model we’d get ahead of plan and 1Q20 and 3Q20 and then fall back to it in 2Q20 and 4Q20 though, in reality, the company would likely backlog deals in some way [3] if it found itself ahead of plan nearing the end of one quarter with a slightly light pipeline the next. 

In concluding this three-part series, I should be clear that while I often refer to “the funnel” as if it’s the only one in the company, most companies don’t have just one inverted funnel.   The VP of Americas marketing will be building and managing one funnel that may look quite different from the VP of EMEA marketing.  Within the Americas, the VP may need to break sales into two funnels:  one for inside/corporate sales (with faster cycles and smaller ASPs) and one for field sales with slower sales cycles, higher ASPS, and often higher close rates.  In large companies, General Managers of product lines (e.g., the Service Cloud GM at Salesforce) will need to manage their own product-specific inverted funnel that cuts across geographies and channels. There’s a funnel for every key sales target in a company and they need to manage them all.

You can download the spreadsheet used in this post, here.

Notes

[1] Most would argue there are two phase lags: the one from new lead to opportunity and the one from opportunity (SQL) creation to close. The latter is the sales cycle.

[2] As another example, inside sales deals tend to close faster than field sales deals.

[3] Doing this could range from taking (e.g., co-signing) the deal one day late to, if policy allows, refusing to accept the order to, if policy enables, taking payment terms that require pushing the deal one quarter back.  The only thing you don’t want to is to have the customer fail to sign the contract because you never know if your sponsor quits (or gets fired) on the first day of the next quarter.  If a deal is on the table, take it.  Work with sales and finance management to figure out how to book it.

The Evolution of Software Marketing: Hey Marketing, Go Get [This]!

As loyal readers know, I’m a reductionist, always trying to find the shortest, simplest way of saying things even if some degree of precision gets lost in the process and even if things end up more subtle than they initially appear.

For example, my marketing mission statement of “makes sales easier” is sometimes misinterpreted as relegating marketing to a purely tactical role, when it actually encompasses far more than that.  Yes, marketing can make sales easier through tactical means like lead generation and sales support, but marketing can also makes sales easier through more leveraged means such as competitive analysis and sales enablement or even more leveraged means such as influencer relations and solutions development or the most leveraged means of picking which markets the company competes in and (with product management) designing products to be easily salable within them.

“Make sales easier” does not just mean lead generation and tactical sales support.

So, in this reductionist spirit, I thought I’d do a historical review of the evolution of enterprise software marketing by looking at its top objective during the thirty-odd years (or should I say thirty odd years) of my career, cast through a fill-in-the-blank lens of, “Hey Marketing, go get [this].”

Hey Marketing, Go Get Leads

In the old days, leads were the focus.  They were tracked on paper and the goal was a big a pile as possible.  These were the days of tradeshow models and free beer:  do anything to get people come by the booth – regardless of whether they have any interest in or ability to buy the software.  Students, consultants, who cares?  Run their card and throw them in the pile.  We’ll celebrate the depth of the pile at the end of the show.

Hey Marketing, Go Get Qualified Leads

Then somebody figured out that all those students and consultants and self-employed people who worked at companies way outside the company’s target customer size range and couldn’t actually buy our software.  So the focus changed to get qualified leads.  Qualified first basically meant not unqualified:

  • It couldn’t be garbage, illegible, or duplicate
  • It couldn’t be self-employed, students, or consultants
  • It couldn’t be other people who clearly can’t buy the software (e.g., in the wrong country, at too small a company, in a non-applicable industry)

Then people realized that not all not-unqualified leads were the same. 

Enter lead scoring.  The first systems were manual and arbitrarily defined:  e.g., let’s give 10 points for target companies, 10 points for a VP title, and 15 points if they checked buying-within-6-months on the lead form.  Later systems got considerably more sophisticated adding both firmographic and behavioral criteria (e.g., downloaded the Evaluation Guide).  They’d even have decay functions where downloading a white paper got you 10 points, but you’d lose a point every week since if there you had no further activity. 

The problem was, of course, that no one ever did any regressions to see if A leads actually were more likely to close than B leads and so on.  At one company I ran, our single largest customer was initially scored a D lead because the contact downloaded a white paper using his Yahoo email address.  Given such stories and a general lack of faith in the scoring system, operationally nobody ever treated an A lead differently from a D lead – they’d all get “6×6’ed” (6 emails and 6 calls) anyway by the sales development reps (SDRs).  If the score didn’t differentiate the likelihood of closing and the SDR process was score-invariant, what good was scoring? The answer: not much.

Hey Marketing, Go Get Pipeline

Since it was seemingly too hard to figure out what a qualified lead was, the emphasis shifted.  Instead of “go get leads” it became, “go get pipeline.”  After all, regardless of score, the only leads we care about are those that turn into pipeline.  So, go get that.

Marketing shifted emphasis from leads to pipeline as salesforce automation (SFA) systems were increasingly in place that made pipeline easier to track.  The problem was that nobody put really good gates on what it took to get into the pipeline.  Worse yet, incentives backfired as SDRs, who were at the time almost always mapped directly to quota-carrying reps (QCRs), were paid incentives when leads were accepted as opportunities.  “Heck,” thinks the QCR, “I’ll scratch my SDR’s back in order to make sure he/she keeps scratching mine:  I’ll accept a bunch of unqualified opportunities, my SDR will get paid a $200 bonus on each, and in a few months I’ll just mark them no decision.  No harm, no foul. “Except the pipeline ends up full of junk and the 3x self-fulfilling pipeline coverage prophecy is developed.  Unless you have 3x coverage, your sales manager will beat you up, so go get 3x coverage regardless of whether it’s real or not.  So QCRs stuff bad opportunities into the pipeline which in turn converts at a lower rate which in turn increases the coverage goal – i.e., “heck, we’re only converting pipeline at 25%, so now we need 4x coverage!”  And so on.

At one point in my career I actually met a company with 100x pipeline coverage and 1% conversion rates. 

Hey Marketing, Go Get Qualified Opportunities (SQLs)

Enter the sales qualified lead (SQL). Companies realize they need to put real emphasis on someone, somewhere in the process defining what’s real and what not.  That someone ends up the QCR and it’s now their job to qualify opportunities as they are passed over and only accept those that both look real and meet documented criteria.  Management is now focused on SQLs.  SQL-based metrics, such as cost-per-SQL or SQL-to-close-rate, are created and benchmarked.  QCRs can no longer just accept everything and no-decision it later and, in fact, there’s less incentive to anyway as SDRs are no longer basically working for the QCRs, but instead for “the process” and they’re increasingly reporting into marketing to boot.  Yes, SDRs will be paid on SQLs accepted by sales, but sales is going to be held highly accountable for what happens to the SQLs they accept. 

Hey Marketing, Go Get Qualified Opportunities Efficiently

At this point we’ve got marketing focused on SQL generation and we’ve built a metrics-driven inbound SDR team to process all leads. We’ve eliminated the cracks between sales and marketing and, if we’re good, we’ve got metrics and reporting in place such that we can easily see if leads or opportunities are getting stuck in the pipeline. Operationally, we’re tight.

But are we efficient? This is also the era of SaaS metrics and companies are increasingly focused not just on growth, but growth efficiency.  Customer acquisition cost (CAC) becomes a key industry metric which puts pressure on both sales and marketing to improve efficiency.  Sales responds by staffing up sales enablement and sales productivity functions. Marketing responds with attribution as a way to try and measure the relative effectiveness of different campaigns.

Until now, campaign efficiency tended to be measured a last-touch attribution basis. So when marketers tried to calculate the effectiveness of various marketing campaigns, they’d get a list of closed deals, and allocate the resultant sales to campaigns by looking at the last thing someone did before buying. The predictable result: down-funnel campaigns and tools got all of the credit and up-funnel campaigns (e.g., advertising) got none.

People pretty quickly realized this was a flawed way to look at things so, happily, marketers didn’t shoot the propellers off their marketing planes by immediately stopping all top-of-funnel activity. Instead, they kept trying to find better means of attribution.

Attribution systems, like Bizible, came along which tried to capture the full richness of enterprise sales. That meant modeling many different contacts over a long period of time interacting with the company via various mechanisms and campaigns. In some ways attribution became like search: it wasn’t whether you got the one right answer, it was whether search engine A helped you find relevant documents better than search engine B. Right was kind of out the question. I feel the same way about attribution. Some folks feel it doesn’t work at all. My instinct is that there is no “right” answer but with a good attribution system you can do better at assessing relative campaign efficiency than you can with the alternatives (e.g., first- or last-touch attribution).

After all, it’s called the marketing mix for a reason.

Hey Marketing, Go Get Qualified Opportunities That Close

After the quixotic dalliance with campaign efficiency, sales got marketing focused back on what mattered most to them. Sales knew that while the bar for becoming a SQL was now standardized, that not all SQLs that cleared it were created equal. Some SQLs closed bigger, faster, and at higher rates than others. So, hey marketing, figure out which ones those are and go get more like them.

Thus was born the ideal customer profile (ICP). In seed-stage startups the ICP is something the founders imagine — based on the product and target market they have in mind, here’s who we should sell to. In growth-stage startups, say $10M in ARR and up, it’s no longer about vision, it’s about math.

Companies in this size range should have enough data to be able to say “who are our most successful customers” and “what do they have in common.” This involves doing a regression between various attributes of customers (e.g., vertical industry, size, number of employees, related systems, contract size, …) and some success criteria. I’d note that choosing the success criteria to regress against is harder than meetings the eye: when we say we find to find prospects most like our successful customers, how are we defining success?

  • Where we closed a big deal? (But what if it came at really high cost?)
  • Where we closed a deal quickly? (But what if they never implemented?)
  • Where they implemented successfully? (But what if they didn’t renew?)
  • Where they renewed once? (But what if they didn’t renew because of uncontrollable factor such as being acquired?)
  • Where they gave us a high NPS score? (But what if, despite that, they didn’t renew?)

The Devil really is in the detail here. I’ll dig deeper into this and other ICP-related issues one day in a subsequent post. Meantime, TOPO has some great posts that you can read.

Once you determine what an ideal customer looks like, you can then build a target list of them and enter into the world of account-based marketing (ABM).

Hey Marketing, Go Get Opportunities that Turn into Customers Who Renew

While sales may be focused simply on opportunities that close bigger and faster than the rest, what the company actually wants is happy customers (to spread positive word of mouth) who renew. Sales is typically compensated on new orders, but the company builds value by building its ARR base. A $100M ARR company with a CAC ratio of 1.5 and churn rate of 20% needs to spend $30M on sales and marketing just to refill the $20M lost to churn. (I love to multiply dollar-churn by the CAC ratio to figure out the real cost of churn.)

What the company wants is customers who don’t churn, i.e., those that have a high lifetime value (LTV). So marketing should orient its ICP (i.e., define success in terms of) not just likelihood to {close, close big, close fast} but around likelihood to renew, and potentially not just once. Defining different success criteria may well produce a different ICP.

Hey Marketing, Go Get Opportunities that Turn into Customers Who Expand

In the end, the company doesn’t just want customers who renew, even if for a long time. To really the build the value of the ARR base, the company wants customers who (1) are relatively easily won (win rate) and relatively quickly (average sales cycle) sold, (2) who not only renew multiple times, but who (3) expand their contracts over time.

Enter net dollar expansion rate (NDER), the metric that is quickly replacing churn and LTV, particularly with public SaaS companies. In my upcoming SaaStr 2020 talk, Churn is Dead, Love Live Net Dollar Expansion Rate, I’ll go into why this happening and why companies should increasingly focus on this metric when it comes to thinking about the long-term value of their ARR base.

In reality, the ultimate ICP is built around customers who meet the three above criteria: we can sell them fairly easily, they renew, and they expand. That’s what marketing needs to go get!

Why Every Startup Needs an Inverted Demand Generation Funnel, Part II

In the previous post, I introduced the idea of an inverted demand generation (demandgen) funnel which we can use to calculate a marketing demandgen budget based given a sales target, an average sales price (ASP), and a set of conversion rates along the funnel. This is a handy tool, isn’t hard to make, and will force you into the very good habit of measuring (and presumably improving) a set of conversion rates along your demand funnel.

In the previous post, as a simplifying assumption, we assumed a steady-state situation where a company had a $2M new ARR target every quarter. The steady-state assumption allowed us to ignore two very real factors that we are going to address today:

  • Time. There are two phase-lags along the funnel. MQLs might take a quarter to turn into SALs and SALs might take two quarters to turn into closed deals. So any MQL we generate now won’t likely become a closed deal until 3 quarters from now.
  • Growth. No SaaS company wants to operate at steady state; sales targets go up every year. Thus if we generate only enough MQLs to hit this-quarter’s target we will invariably come up short because those MQLs are working to support a (presumably larger) target 3 quarters in the future.

In order to solve these problems we will start with the inverted funnel model from the previous post and do three things:

  • Quarter-ize it. Instead of just showing one steady-state quarter (or a single year), we are going to stretch the model out across quarters.
  • Phase shift it. If SALs take two quarters to close and MQLs take 1 quarter to become SALS we will reflect this in the model, by saying 4Q20 deals need come from SALs generated in 2Q20 which in turn come from MQLs generated in 1Q20.
  • Extend it. Because of the three-quarter phase shift, the vast majority of the MQLs we’ll be generating 2020 are actually to support 2021 business, so we need to extend the model in 2021 (with a growth assumption) in order to determine how big of a business we need to support.

Here’s what the model looks like when you do this:

You can see that this model generates a varying demandgen budget based on the future sales targets and if you play with the drivers, you can see the impact of growth. At 50% new ARR growth, we need a $1.47M demandgen budget in 2020, at 0% we’d need $1.09M, and at 100% we’d need $1.85M.

Rather than walk through the phase-shifting with words, let me activate Excel’s trace-precedents feature so you can see how things flow:

With these corrections, we have transformed the inverted funnel into a pretty realistic tool for modeling MQL requirements of the company’s future growth plan.

Other Considerations

In reality, your business may consist of multiple funnels with different assumption sets.

  • Partner-sourced deals are likely to have smaller deal sizes (due to margin given to the channel) but faster conversion timeframes and higher conversion rates. (Because we will learn about deals later in the cycle, hear only about the good ones, and the partner may expedite the evaluation process.)
  • Upsell business will almost certainly have smaller deal sizes, faster conversion timeframes, and much higher conversion rates than business to entirely new customers.
  • Corporate (or inside) sales is likely to have a materially different funnel from enterprise sales. Using a single funnel that averages the two might work, provided your mix isn’t changing, but it is likely to leave corporate sales starving for opportunities (since they do much smaller deals, they need many more opportunities).

How many of these funnels you need is up to you. Because the model is particularly sensitive to deal size (given a constant set of conversion rates) I would say that if a certain type of business has a very different ASP from the main business, then it likely needs its own funnel. So instead of building one funnel that averages everything across your company, you might be three — e.g.,

  • A new business funnel
  • An upsell funnel
  • A channel funnel

In part III of this series, we’ll discuss how to combine the idea of the inverted funnel with time-based close rates to create an even more accurate model of your demand funnel.

The spreadsheet I made for this series of posts is available here.

Why Every Startup Needs an Inverted Demand Generation Funnel, Part I

Does my company spend too much on marketing? Too little? How I do know? What is the right level of marketing spend at an enterprise software startup? I get asked these questions all the time by startup CEOs, CMOs, marketing VPs, and marketing directors.

You can turn to financial benchmarks, like the KeyBanc Annual SaaS Survey for some great high-level answers. You can subscribe to SiriusDecisions for best practices and survey data. Or you can buy detailed benchmark data [1] from OPEXEngine. These are all great sources and I recommend them heartily to anyone who can afford them.

But, in addition to sometimes being too high-level [2], there is one key problem with all these forms of benchmark data: they’re not about you. They’re not based on your operating history. While I certainly recommend that executives know their relevant financial benchmarks, there’s a difference between knowing what’s typical for the industry and what’s typical for you.

So, if you want to know if your company is spending enough on marketing [3], the first thing you should do is to make an inverted demand generation (aka, demandgen) funnel to figure out if you’re spending enough on demandgen. It’s quite simple and I’m frankly surprised how few folks take the time to do it.

Here’s an inverted demandgen funnel in its simplest form:

Inverted demandgen funnel

Let’s walk through the model. Note that all orange cells are drivers (inputs) and the white cells are calculations (outputs). This model assumes a steady-state situation [4] where the company’s new ARR target is $2,000,000 each quarter. From there, we simply walk up the funnel using historical deal sizes and conversion rates [5].

  • With an average sales price (ASP) of $75,000, the company needs to close 27 opportunities each quarter.
  • With a 20% sales qualified lead (SQL) to close rate we will need 133 SQLs per quarter.
  • If marketing is responsible for generating 80% of the sales pipeline, then marketing will need to generate 107 of those SQLs.
  • If our sales development representatives (SDRs) can output 2.5 opportunities per week then we will need 5 SDRs (rounding up).
  • With an 80% SAL to SQL conversion rate we will need 133 SALs per quarter.
  • With a 10% MQL to SAL conversion rate we will need 1,333 MQLs per quarter.
  • With a cost of $250 per MQL, we will need a demandgen budget [6] of $333,333 per quarter.

The world’s simplest way to calculate the overall marketing budget at this point would be to annualize demandgen to $1.3M and then double it, assuming the traditional 50/50 people/programs ratio [7].

Not accounting for phase lag or growth (which will be the subjects of part II and part III of this post), let’s improve our inverted funnel by adding benchmark and historical data.

Let’s look at what’s changed. I’ve added two columns, one with 2019 actuals and one with benchmark data from our favorite source. I’ve left the $2M target in both columns because I want to compare funnels to see what it would take to generate $2M using either last year’s or our benchmark’s conversion rates. Because I didn’t want to change the orange indicators (of driver cells) in the left column, when we have deviations from the benchmark I color-coded the benchmark column instead. While our projected 20% SQL-to-close rate is an improvement from the 18% rate in 2019, we are still well below the benchmark figure of 25% — hence I coded the benchmark red to indicate a problem in this row. Our 10% MQL-to-SQL conversion rate in the 2020 budget is a little below the benchmark figure of 12%, so I coded it yellow. Our $250 cost/MQL is well below the benchmark figure of $325 so I coded it green.

Finally, I added a row to show the relative efficiency improvement of the proposed 2020 budget compared to last year’s actuals and the benchmark. This is critical — this is the proof that marketing is raising the bar on itself and committed to efficiency improvement in the coming year. While our proposed funnel is overall 13% more efficient than the 2019 funnel, we still have work to do over the next few years because we are 23% less efficient than we would be if we were at the benchmark on all rates.

However, because we can’t count on fixing everything at once, we are taking a conservative approach where we show material improvement over last year’s actuals, but not overnight convergence to the benchmark — which could take us from kaizen-land to fantasy-land and result in a critical pipeline shortage downstream.

Moreover because this approach shows not only a 13% overall efficiency improvement but precisely where you expect it to come from, the CEO can challenge sales and marketing leadership:

  • Why are we expecting to increase our ASP by $5K to $75K?
  • Why do you think we can improve the SQL-to-close rate from 18% to 20% — and what you are doing to drive that improvement? [8]
  • What are we doing to improve the MQL-to-SAL conversion rate?
  • How are we going to improve our already excellent cost per MQL by $25?

In part II and part III of this post, we’ll discuss two ways of modeling phase-lag, modeling growth, and the separation of the new business and upsell funnels.

You can download my spreadsheet for this post, here.

Notes

[1] For marketing or virtually anything else.

[2] i.e., looking at either S&M aggregated or even marketing overall.

[3] The other two pillars of marketing are product marketing and communications. The high-level benchmarks can help you analyze spend on these two areas by subtracting your calculated demandgen budget from the total marketing budget suggested by a benchmark to see “what’s left” for the other two pillars. Caution: sometimes that result is negative!

[4] The astute reader will instantly see two problems: (a) phase-lag introduced by both the lead maturation (name to MQL) and sales (SQL to close) cycles and (b) growth. That is, in a normal high-growth startup, you need enough leads not to generate this quarter’s new ARR target but the target 3-4 quarters out, which is likely to be significantly larger. Assuming a steady-state situation gets rid of both these problems and simplifies the model. See part II and part III of this post for how I like to manage that added real-world complexity.

[5] Hint: if you’re not tracking these rates, the first good thing about this model is that it will force you to do so.

[6] When I say demandgen budget, I mean money spent on generating leads through marketing campaigns. Sometimes that very directly (e.g., adwords). Other times it’s a bit indirectly (e.g., an SEO program). I do not include demandgen staff because I am trying to calculate the marginal cost of generating an extra MQL. That is, I’m not trying to calculate what the company spends, in total, on demandgen activities (which would include salary, benefits, stock-based comp, etc. for demandgen staff) but instead the marketing programs cost to generate a lead (e.g., in case we need to figure out how much to budget to generate 200 more of them).

[7] In an increasingly tech-heavy world where marketing needs to invest a lot in infrastructure as well, I have adapted the traditional 50/50 people/programs rule to a more modern 45/45/10 people/programs/infrastructure rule, or even an infrastructure-heavy split of 40/40/20.

[8] Better closing tools, an ROI calculator, or a new sales training program could all be valid explanations for assuming an improved close rate.

A Historical Perspective on Why SAL and SQL Appear to be Defined Backwards

Most startups today use some variation on the now fairly standard terms SAL (sales accepted lead) and SQL (sales qualified lead).  Below see the classic [1] lead funnel model from marketing bellwether Sirius Decisions that defines this.

One great thing about working as an independent board member and consultant is that you get to work with lots of companies. In doing this, I’ve noticed that while virtually everyone uses the terminology SQL and SAL, that some people define SQL before SAL and others define SAL before SQL.

Why’s that?  I think the terminology was poorly chosen and is confusing.  After all, what sounds like it comes first:  sales accepting a lead or sales qualifying a lead?  A lot of folks would say, “well you need to accept it before you can qualify it.”  But others would say “you need to qualify it before you can accept it.”  And therein lies the problem.

The correct answer, as seen above, is that SAL comes before SQL.  I have a simple way of remembering this:  A comes before Q in the alphabet, and SAL comes before SQL in the funnel. Until I came up with that I was perpetually confused.

More importantly, I think I also have a way of explaining it.  Start by remembering two things:

  • This model was defined at a time when sales development reps (SDRs) generally reported to sales, not marketing [2].
  • This model was defined from the point of view of marketing.

Thus, sales accepting the lead didn’t mean a quota-carrying rep (QCR) accepted the lead – it meant an SDR, who works in the sales department, accepted the lead.  So it’s sales accepting the lead in the sense that the sales department accepted it.  Think: we, marketing, passed it to sales.

After the SDR worked on the lead, if they decided to pass it to a QCR, the QCR would do an initial qualification call, and then the QCR would decide whether to accept it.  So it’s a sales qualified lead, in the sense that a salesperson has qualified it and decided to accept it as an opportunity.

Think: accepted by an SDR, qualified by a salesrep.

Personally, I prefer avoid the semantic swamp and just say “stage 1 opportunity” and “stage 2 opportunity” in order to keep things simple and clear.

# # #

Notes

[1] This model has since been replaced with a newer demand unit waterfall model that nevertheless still uses the term SQL but seems to abandon SAL.

[2] I greatly prefer SDRs reporting to marketing for two reasons:  [a] unless you are running a pure velocity sales model, your sales leadership is more likely to deal-people than process-people – and running the SDRs is a process-oriented job and [b] it eliminates a potential crack in the funnel by passing leads to sales “too early”.  When SDRs report to marketing, you have a clean conceptual model:  marketing is the opportunity creation factory and sales is the opportunity closing factory.