Category Archives: Valuation

The SaaS Rule of 40

After the SaaSacre of early 2016, investors generally backed off a growth-at-all-costs mindset and started to value SaaS companies using an “appropriate” balance of growth and profitability.  The question then became, what’s appropriate?  The answer was:  the rule of 40 [1].

What’s the rule of 40?  Growth rate + profit should be greater than or equal to 40%.

There are a number of options for deciding what to use to represent growth (e.g., ARR) and profit (e.g., EBITDA, operating margin). For public companies it usually translates to revenue growth rate and free cash flow margin.

It’s important to understand that such “rules” are not black and white.  As we’ll see in a minute, lots of companies deviate from the rule of 40.  The right way to think about these rules of thumb is as predictors.  Back in the day, what best predicted the value of a SaaS company?  Revenue growth — without regard for margin.  (In fact, often inversely correlated to margin.)  When that started to break down, people started looking for a better independent variable.  The answer to that search was the rule of 40 score.

Let’s examine a few charts courtesy of the folks at Pacific Crest and as presented at the recent, stellar Zuora CFO Forum, a CFO gathering run alongside their Subscribed conference.

rule-of-40

This scatter chart plots the two drivers of the rule of 40 score against each other, colors each dot with the company’s rule of 40 score, and adds a line that indicates the rule of 40 boundary.  42% of public SaaS companies, and 77% of public SaaS market cap, is above the rule of 40 line.

As a quick demonstration of the exception-to-every-rule principle, Tintri recently went public off 45% growth with -81% operating margins, [2] reflecting a rule of 40 score of -36%, and a placement that would be off the chart (in the underneath sense) even if corrected for non-cash expenses.

For those interested in company valuations, the more interesting chart is this one.

rule of 40 valuation.PNG

This chart plots rule of 40 score on the X axis, valuation multiple on the Y axis, and produces a pretty good regression line the shows the relationship between the two.  In short, the rule of 40 alone explains nearly 50% of SaaS company valuation.  I believe that outliers fall into one of two categories:

  • Companies in a strategic situation that explains the premium or discount relative to the model — e.g., the premium for Cloudera’s strong market position in the Hadoop space.
  • Companies whose valuations go non-linear at the high end due to scarcity — e.g., Veeva.

Executives and employees at startups should understand [3] the rule of 40 as it explains the general tendency of SaaS companies to focus on a balance of growth and profitability as opposed to a growth at all costs strategy that was more popular several years back.  Ignore the rule of 40 at your peril.

Notes

[1] While the Rule of 40 concept preceded the SaaSacre, I do believe that the SaaSacre was the wake-up call that made more investors and companies pay attention to.

[2] Using operating margin here somewhat lazily as I don’t want to go find unlevered free cash flow margin, but I don’t think it materially changes the point.

[3] Other good rule of 40 posts are available from:  Tomasz Tungaz, Sundeep Peechu, and Jeff Epstein and Josh Harder.

Why, as CEO, I Love Driver-Based Planning

While driver-based planning is a bit of an old buzzword (the first two Google hits date to 2009 and 2011 respectively), I am nevertheless a huge fan of driver-based planning not because the concept was sexy back in the day, but because it’s incredibly useful.  In this post, I’ll explain why.

When I talk to finance people, I tend to see two different definitions of driver-based planning:

  • Heavy in detail, one where you build a pretty complete bottom-up budget for an organization and play around with certain drivers, typically with a strong bias towards what they have historically been.  I would call this driver-based budgeting.
  • Light in detail where you struggle to find the minimum set of key drivers around which you can pretty accurately model the business and where drivers tend to be figures you can benchmark in the industry.  I call this driver-based modeling.

While driver-based budgeting can be an important step in building an operating plan, I am actually bigger fan of driver-based modeling.  Budgets are very important, no doubt.  We need them to run plan our business, align our team, hold ourselves accountable for spending, drive compensation, and make our targets for the year.  Yes, a good CEO cares about that as a sine qua non.

But a great CEO is really all about two things:

  • Financial outcomes (and how they create shareholder value)
  • The future (and not just next year, but the next few)

The ultimate purpose of driver-based models is to be able answer questions like what happens to key financial outcomes like revenue growth, operating margins, and cashflow given set of driver values.

I believe some CEOs are disappointed with driver-based planning because their finance team have been showing them driver-based budgets when they should have been showing them driver-based models.

The fun part of driver-based modeling is trying to figure out the minimum set of drivers you need to successfully build a complete P&L for a business.  As a concrete example I can build a complete, useful model of a SaaS software company off the following minimum set of drivers

  • Number and type of salesreps
  • Quota/productivity for each type
  • Hiring plans for each type
  • Deal bookings mix for each (e.g., duration, prepayments, services)
  • Intra-quarter bookings linearity
  • Services margins
  • Subscription margins
  • Sales employee types and ratios (e.g., 1 SE per 2 salesreps)
  • Marketing as % of sales or via a set of funnel conversion assumptions (e.g., responses, MQLs, oppties, win rate, ASP)
  • R&D as % of sales
  • G&A as % of sales
  • Renewal rate
  • AR and AP terms

With just those drivers, I believe I can model almost any SaaS company.  In fact, without the more detailed assumptions (rep types, marketing funnel), I can pretty accurately model most.

Finance types sometimes forget that the point of driver-based modeling is not to build a budget, so it doesn’t have to be perfect.  In fact, the more perfect you make it, the heavier and more complex it gets.  For example, intra-quarter bookings linearity (i.e., % of quarterly bookings by month) makes a model more accurate in terms of cash collections and monthly cash balances, but it also makes it heavier and more complex.

Like each link in Marley’s chains, each driver adds to the weight of the model, making it less suited to its ultimate purpose.  Thus, with the additional of each driver, you need to ask yourself — for the purposes of this model, does it add value?  If not, throw it out.

One of the most useful models I ever built assumed that all orders came in on the last day of quarter.  That made building the model much simpler and any sales before the last day of the quarter — of which we hope there are many — become upside to the conservative model.

Often you don’t know in advance how much impact a given driver will make.  For example, sticking with intra-quarter bookings linearity, it doesn’t actually change much when you’re looking at quarter granularity a few years out.  However, if your company has a low cash balance and you need to model months, then you should probably keep it in.  If not, throw it out.

This process makes model-building highly iterative.  Because the quest is not to build the most accurate model but the simplest, you should start out with a broad set of drivers, build the model, and then play with it.  If the financial outcomes with which you’re concerned (and it’s always a good idea to check with the CEO on which these are — you can be surprised) are relatively insensitive to a given driver, throw it out.

Finance people often hate this both because they tend to have “precision DNA” which runs counter to simplicity, and because they have to first write and then discard pieces of their model, which feels wasteful.  But if you remember the point — to find the minimum set of drivers that matter and to build the simplest possible model to show how those key drivers affect financial outcomes — then you should discard pieces of the model with joy, not regret.

The best driver-based models end up with drivers that are easily benchmarked in the industry.  Thus, the exercise becomes:  if we can converge to a value of X on industry benchmark Y over the next 3 years, what will it do to growth and margins?  And then you need to think about how realistic converging to X is — what about your specific business means you should converge to a value above or below the benchmark?

At Host Analytics we do a lot of driver-based modeling and planning internally.  I can say it helps me enormously as CEO think about industry benchmarks, future scenarios, and how we create value for the shareholders.  In fact, all my models don’t stop at P&L, they go onto implied valuation given growth/profit and ultimately calculate a range of share prices on the bottom line.

The other reason I love driver-based planning is more subtle.  Much as number theory helps you understand the guts of numbers in mathematics, so does driver-based modeling help you understand the guts of your business — which levers really matter, and how much.

And that knowledge is invaluable.

A Look at the Zendesk S-1 (IPO)

I thought I’d take a quick read of the Zendesk S-1 today, so here are my real-time notes on so doing.  Before diving in, let me provide a quick pointer to David Cummings’ summary of the same.

My notes:

  • 40,000 customers in 140 countries
  • 2012 revenues of $38.2M
  • 2013 revenues of $72.0M, 88% growth
  • 41% of revenues from international.  (High for a SaaS company at this size, but makes sense given their roots.)
  • Net loss of $24.4M and $22.6M in 2012 and 2013, -30% net loss in 2013
  • Zendesk approach:  beautifully simple, omni-channel, affordable, natively mobile, cloud-based, open, proactive, strategic.  They do this well.  (I’ve always viewed them as a very well run, low-end-up market entrant.)
  • Founded in Denmark in 2007.
  • 115M shares outstanding anticipated after the offering with seemingly another 40M in options under various options and ESOP plans.  (Seems like a lot of dilution looming.)
  • 65% gross margins.  (Though they don’t break out subscription vs. service which probably depresses things a tad.)
  • 20% of revenue spent on R&D.  (Normal.)
  • 52% of revenue on S&M.  (High, particularly for freemium which is notionally low-cost!)
  • 22% of revenue on G&A  (Normal to high, probably due to IPO itself.)
  • $53M in cash at 12/31/13
  • Headcount growth from 287 to 473 employees in year ended 12/31/13, up 68%
  • They have experienced security breaches:

“We have experienced significant breaches of our security measures and our customer service platform and live chat software are at risk for future breaches as a result of third-party action, employee, vendor, or contractor error, malfeasance, or other factors. For example, in February 2013, we experienced a security breach involving unauthorized access to three of our customers’ accounts and personal information of consumers maintained in those customer accounts.”

  • “[We are] highly dependent on free trials.”  (These guys define freemium model for enterprise software in my opinion.)
  • S&M org grew from 85 to 165 employees in period ending 12/31/13.
  • Owe $23.8M on a credit facility.  (Rare to see this much debt, but probably a smart way to reduce equity dilution.)
  • The three principles that drive the founders:  Have great products.  Care for your customers.  Attract a great team.  (Beats “Don’t Be Evil” any day in my book.)
  • Dollar-based “net expansion rate” (closest thing they discuss relative to renewals or churn):

    “We calculate our dollar-based net expansion rate by dividing our retained revenue net of contraction and churn by our base revenue. We define our base revenue as the aggregate monthly recurring revenue of our customer base as of the date one year prior to the date of calculation. We define our retained revenue net of contraction and churn as the aggregate monthly recurring revenue of the same customer base included in our measure of base revenue at the end of the annual period being measured. Our dollar-based net expansion rate is also adjusted to eliminate the effect of certain activities that we identify involving the transfer of agents between customer accounts, consolidation of customer accounts, or the split of a single customer account into multiple customer accounts. […] Our dollar-based net expansion rate was 126% and 123% as of December 31, 2012 and 2013, respectively. We expect our dollar-based net expansion rate to decline over time as our aggregate monthly recurring revenue grows.”

  • $66M accumulated deficit
  • Have data centers in North America, Europe, and Asia
  • 4Q13/4Q12 growth rate = 83% compared to 2013/2012 growth rate = 88%.  (Suggests growth is gently decelerating.)
  • Cashflow from operations in 2013 = $4.0M.
  • But they had -$24.1M in cashflow from investing activities.  (This is confusing because it’s a mix of items but broken into $12.4M in “marketable securities, property and equipment,” $7.1M to build data centers, and $4.7M in capitalized software development.  I’m not an accountant but if you ask me if “the business” is cashflow positive, the answer is no despite the $4.0M positive cashflow from operations. Building data centers and developing software, regardless of accounting classification, are all part of running the business to me.)
  • I am surprised they capitalize R&D.  Most software companies, far as I know, don’t.

zendesk common fmv

 

The FMV of the common stock is depicted above, by my math an annual 68% appreciation rate.

  • Huge number of leads are organic:  “the quarter ended December 31, 2013, 70% of our qualified sales leads, which are largely comprised of prospects that commence a free trial of our customer service platform, came from organic search, customer referrals, and other unpaid sources.”
  • SVPs listed (CFO, R&D) earn $240K base + $40K bonus
  • Automatic 5% share expansion / “overhang” built into the stock option and incentive plan.  Pretty rich in my experience and haven’t noticed anyone else doing it automatically before.
  • Letting execs buy stock with promissory notes … hum, I thought that went out with leg warmers.  Both loans were paid off by 12/31/31 and maybe that’s why.
  • CEO will own 7.1% of shares after the offering, including 4.3M (of the 8.1M beneficially owned) granted as options at the 2/14 board meeting.  (Seems odd to me; a huge option grant right before the IPO.  Hum.)
  • Nice banker line-up:  Goldman Sachs, Morgan Stanley, Credit Suisse, Pacific Crest
  • Raised $71M in preferred equity / venture capital
  • They do monthly, quarterly, and annual invoicing.  (Surprised they offer the short terms, particularly monthly.)
  • $6.5M in advertising expense in 2013
  • $11.4M in capitalized “internal use” software on the balance sheet at 12/31/13
  • They paid $16M for the Zopim (live chat) acquisition
  • Ticker symbol:  ZEN

What Drives SaaS Company Valuation? Growth!

If you’ve ever wondered what drives the valuation of a SaaS vendor, then take a look at this chart that a banker showed me the other day.

saas valuations 2The answer, pretty clearly, is revenue growth.  The correlation is stunning.   Taking some points off the line:

  • 10% growth gets you an on-premises-like valuation of 2x (forward) revenues
  • 20% growth gets you 3x
  • 30% growth gets you 4x
  • 50% growth gets you nearly 6x

Basically (growth rate % / 10) + 1 = forward revenue multiple.

You might think that profitability played some role in the valuation equation, but if you did, you’re wrong.  Let’s demonstrate this by looking at CY13 EBITDA margins as reported by the same banker:

  • Marketo (MKTO) -44% with a ~4x revenue multiple
  • Marin Software (MRIN) -40% with a ~4x revenue multiple
  • Workday (WDAY) -22% with a ~11x revenue multiple
  • Bazaarvoice (BV) -6% with a ~5x revenue multiple
  • Cornerstone on Demand (CSOD) 0% with a ~8x revenue multiple
  • Qlik Technologies (QLIK) 13% with a ~3x revenue multiple
  • Tangoe (TNGO) 17% with a ~3x revenue multiple

As you can see, there’s basically no reward for profitability.  In real estate what matters is location, location, location.  In SaaS, it’s growth, growth, and growth.

Highlights from the Jeffries Enterprise Software Update, March 2011

Jeffries puts out a very nice enterprise software monthly update (with mile-long disclaimers and which does not seem to be freely distibuted on the Internet so I cannot link to it).

Nevertheless, I thought I’d share some of the salient highlights from this month’s version.

On M&A:

  • 7 M&A deals in February with consideration above $20M, flat year/year and up from 6 quarter/quarter.
  • Median adjusted price/revenue multiple of 2.4x, up from 1.8x year/year and 1.9x quarter/quarter.
  • TTM median adjusted price/revenue multiple of 3.0x, up from 2.3x year/year and flat quarter/quarter.

On public company valuations (enterprise value to TTM revenue multiple) by category:

  • Virtualization:  7.8x
  • SaaS:  5.8x
  • Healthcare IT:  5.1x
  • Human capital mangement:  4.9x
  • Enterprise content management:  4.2x
  • Data mangement: 3.9x
  • Business intelligence:  3.5x
  • Infrastructure software:  3.1x
  • Systems management: 3.0x
  • Security management:  2.2x
  • ERP:  2.1x

On recent IPOs (median of 8 recent, including Smart, QlikTech, IntraLinks, RealPage, SciQuest, ChinaCache, SkyMobi, and Velti):

  • Most recent quarter revenues:  $26.2M
  • Revenues (year of pricing):  $138M
  • Revenues (forward):  $189M
  • Annual estimated revenue growth:  23%
  • Operating margin:  16%
  • Forward net income:  $20.3M

On the IPO pipeline:

  • 34 companies
  • $6.2B in filings (in proceeds raised by the companies)
  • Filing size:  $182M mean, $100M median (amount proposed to be raised)
  • TTM revenues:  $575M mean, $148M median
  • 52 filings in 4Q10, down from 61 in 4Q09, and down from 63 in 3Q10, yet up from the dark days of 4Q08 (6) and 1Q09 (4)

Highlights from 2Q09 Software Equity Group Report

I’m not sure which better explains my recent decrease in blog post frequency: bit.ly or being out of the office. Either way, I wasn’t kidding a few weeks ago when I said I’m changing my sharing pattern. Much as popular business authors take one good idea and inflate it into a book, I now realize (thanks to bit.ly) that I have been taking what could have been one good tweet and inflating it into a blog post. While I’ve not drawn any definitive conclusions, thus far I’d say I’m sharing many more articles with significantly less effort than before.

Going forward, my guess is that steady state will be ~2 posts/week (instead of ~5), but those posts will supplemented by 5-10 tweets/day (RSS feed here). Because of this, I’ve added the Tweet Blender widget to my home page, made it quite large, and have set it up to include not only my direct tweets (@ramblingman) but all tweets that include the word ramblingman to catch re-tweets and such. This will probably result in the inclusion of odd items from time to time — apologies if anything offensive comes up — and if this becomes a problem I’ll change the setup.

I’ve re-enabled Zemanta after turning it off for several quarters because I found it too slow to justify its value. They’ve put out a new release, and since I’m interested in all things vaguely semantic web, I figured I’d give it another try. Finally, I’m still considering renaming the blog to either Kellblog or Kellogic, but doing so is a daunting project (think of all the links that break) which I’m not yet ready to tackle at present. So, watch this space.

The purpose of this post, however is to present highlights from the Software Equity Group’s 2Q09 Software Industry Equity Report. Here they are:

  • Consensus IT spending forecasts for 2009 predict 8% decrease in overall spending
  • Top five CTO spending priorities from the Goldman Sachs 3/09 survey: cost reduction, diaster recovery, server virtualization, server consolidation, data center consolidation
  • The SEG software index had a 23.7% positive return, bouncing back from a decline in 1Q09
  • Median enterprise value (EV) / sales = 1.4x, up from 1.2x the prior quarter
  • Median EV/EBITDA = 9.4x, up from 7.7x the prior quarter
  • Median EBITDA margin = 14.9%
  • Median net income margin = 3.9%
  • Median TTM revenue growth = 5.2%
  • Baidu and SolarWinds topped the EV/sales charts with values of 16.2x and 10.0x revenues, respectively
  • The great software arbitrage continues with companies >$1B in revenues having a median EV/sales of 2.2x while those <$100M have a mean of 0.7x. This theoretically means that the median big company can buy a median small one and triple its value overnight.
  • Database companies median EV/sales was 1.8x
  • Document/content management companies median EV/sales was 2.4x
  • Median SaaS vendor EV/sales was 2.6x, suggesting that $1 of SaaS revenue is worth $1.70 of perpetual revneue. (Though I worry the overall average includes SaaS so this could be understating it.)
  • Four software companies went public in 2Q09 raising, on median, $182M with an EV of $814M, an EV/revenue of 3.6x, and a first-day return of 17.3%
  • Five companies remain in the IPO pipeline with median revenues of $58.7M, net income of -$2.2M, and growth of 46.4%
  • 285 software M&A deals were done on the quarter with $3.1B in total value. This was down from 296 deals in the prior quarter worth $7.3B. (The lowest total value in the past 13 quarters.)
Related articles by Zemanta