Category Archives: Planning

Next-Generation Planning and Finance, A Broader and Slightly Deeper Look

This post was prompted by feedback to the last prediction in my 2021 annual predictions post, The Rebirth of Planning and Enterprise Performance Management.  Excerpt:

EPM 1.0 was Hyperion, Arbor, and TM1. EPM 2.0 was Adaptive Insights, Anaplan, and Planful (nee Host Analytics).  EPM 3.0 is being born today.  If you’ve not been tracking this, here a list of next-generation planning startups …

Since that post, I’ve received feedback with several more startups to add to the list and a request for a little more color on each one.  That’s what I’ll cover in this post.  I can say right now this got bigger, and took way longer, than I thought it would at the outset.  That means two things:  there may be more mistakes and omissions than usual and wow if I thought the space was being reborn before, I really think it now.  Look at how many of these firms were founded in the past two years!

Order is alphabetical.  Links are to sources.  All numbers are best I could find as of publication date (and I have no intent to update).  I have added and/or removed companies from the prior post based on feedback and my subjective perception as to whether I think they qualify as “next generation” planning.  Note that I have several and varied relationships with some of these companies (see prior post and disclaimers).  List is surely not inclusive of all relevant companies.

  • Allocadia.  Founded in Vancouver in 2010 by friends from Business Objects / Crystal Reports, this is a marketing performance management company that has raised $24M in capital and has 125 employees.  Marketing planning is a real problem and they’re taking, last I checked, the enterprise approach to it.  They have 93 reviews and 4.1 stars on G2.
  • Causal.  Founded in 2019 in London.  I can’t find them in Crunchbase, but their site shows they have seed capital from Coatue and Passion Capital.  They promise, among other things, to “make finance beautiful” and the whole thing strikes me as a product-led growth strategy for a new tool to build financial models outside of traditional spreadsheets.
  • Decipad.  Co-founded in late 2020 in the UK by friend, former MarkLogic consultant, and serial entrepreneur Nuno Job, Decipad is a seed-stage, currently fewer than 10 employee, startup that, last I checked, was working on a low-code product for planning and modeling for early-stage companies.
  • Finmark.  Raleigh-based, and founded in 2020, this company has raised $5M in seed capital from a bevy of investors including Y Combinator, IDEA Fund, Draper, and Bessemer.  The company has about 50 employees, a product in early access mode, and is a product built “by founders, for founders” to provide integrated finance for startups.
  • Grid.  This company offers a web-based tool that appears to layer atop spreadsheets, using them as a data source to build reports, dashboards and apps.  The company was founded in 2018, has around 20 people, and is based in Reykjavik.  The founder/CEO previously served as head of product management at Qlik and is a “proud data nerd.”  Love it.
  • LiveFlow was founded in 2021, based in Redwood City, has raised about $500K in pre-seed capital from Y Combinator and Seedcamp.  The company offers a spreadsheet that connects to your real-time data, supporting the creation of timely reports and dashboards.  Connectivity appears to be the special sauce here, and it’s definitely a problem that needs to be solved better.
  • OnPlan.  Founded in 2106 in San Francisco by serial entrepreneur and new friend, David Greenbaum, OnPlan is a financial modeling, scenario analysis, and forecasting tool.  The company has raised an undisclosed amount of angel financing and has over 30 employees.  Notably, they are building atop Google Sheets which allows them “stand on the shoulders of giants” and provide a rare option that is, I think, Google-first as opposed to Excel-first or Excel-replacement.
  • PlaceCPM.  Founded in 2018 in Austin, this company takes a focused approach, offering forecasting and planning for SaaS and professional services businesses, built on the Salesforce platform, and with pricing suggestive of an SMB/MM focus. The company has raised $4M in pre- and seed financing.  The product gets 4.9 stars on G2 across 13 reviews.
  • Plannuh.  Pronounced with a wicked Southie accent, Plannuh is Boston for Planner, and a marketing planning package that helps marketers create and manage plans and budgets.  Founded by (a fellow) former $1B company CMO, Peter Mahoney, the company has raised $4M and has over 30 employees.  As mentioned, I think marketing planning is a real problem and these guys are taking a velocity approach to it.  They have 5.0 stars on G2 across five reviews.  I’m an advisor and wrote the foreword to their The Next CMO book.
  • Pry.  Founded in San Francisco in 2019 by two startup-experienced Cal grads (Go Bears!), with investment from pre-seed fund Nomo Ventures, Pry has fewer than 10 employees, and a vision to make it simple for early-stage companies to manage their budget, hiring plan, financial models, and cash.
  • Runway.  This company is backed with a $4.5M seed round from the big guns at A16Z.  I can’t find them on Crunchbase and their website has the expected “big thinking but no detail” for a company that’s still in stealth.  Currently at about 10 people.
  • Stratify.  Founded in 2020 in Seattle, this company has raised $5.0M to pursue real-time and collaborative budgeting and forecasting to support “continuous planning” (which is reminiscent of Planful’s messaging).  Both the founder and the lead investor have enterprise roots (with SAP / Concur) and plenty of startup experience.  The company has fewer than 10 employees today.
  • TruePlan.  Founded in 2020, with three employees, and seemingly bootstrapped I may have found these guys on the early side.  While the product appears still in development, the vision looks clear:  dynamic headcount management, that ties together the departmental (budget owner) manager, finance, recruiting, and people ops.  Workforce planning is a real problem, let’s see what they do with it.
  • VaretoFounded in 2020 in Mountain View, with fewer than 10 employees and some pretty well pedigreed founders, the company seeks to help with strategic finance, reporting, and planning.  The website is pretty tight-lipped beyond that and I can’t find any public financing information.

Thanks to Ron Baden, Nuno Job, and Bill Rausch for helping me track down so many companies.

(Added Valsight 2/10/21.)

Kellblog 2021 Predictions

I admit that I’ve been more than a little slow to put out this post, but at least I’ve missed the late December (and early January) predictions rush.  2020 was the kind of year that would make anyone in the predictions business more than a little gun shy.  I certainly didn’t have “global pandemic” on my 2020 bingo card and, even if I somehow did, I would never have coupled that with “booming stock market” and median SaaS price/revenue multiples in the 15x range.

That said, I’m back on the proverbial horse, so let’s dig in with a review of our 2020 predictions.  Remember my disclaimers, terms of use, and that this exercise is done in the spirit of fun and as a way to tee-up discussion of interesting trends, and nothing more.

2020 Predictions Review

Here a review of my 2020 predictions along with a self-graded and for this year, pretty charitable, hit/miss score.

  1. Ongoing social unrest. No explanation necessary.  HIT.
  2. A desire for re-unification. We’ll score that one a whopping, if optimistic, MISS.  Hopefully it becomes real in 2021.
  3. Climate change becomes new moonshot. Swing and a MISS.  I still believe that we will collectively rally behind slowing climate change but feel like I was early on this prediction, particularly because we got distracted with, shall we say, more urgent priorities.  (Chamath, a little help here please.)
  4. The strategic chief data officer (CDO). CDO’s are indeed becoming more strategic and they are increasingly worried about playing not only defense but also offense with data, so much so that the title is increasingly morphing into chief data & analytics officer (CDAO).  HIT.
  5. The ongoing rise of devops. In an era where we (vendors) increasingly run our own software, running it is increasingly as important as building it.  Sometimes, moreHIT.
  6. Database proliferation slows. While the text of this prediction talks about consolidation in the DBMS market, happily the prediction itself speaks of proliferation slowing and that inconsistency gives me enough wiggle room to declare HITDB-Engines ranking shows approximately the same number of DBMSs today (335) as one year ago (334).  While proliferation seems to be slowing, the list is most definitely not shrinking.
  7. A new, data-layer approach to data loss prevention. This prediction was inspired by meeting Cyral founder Manav Mital (I think first in 2018) after having a shared experience at Aster Data.  I loved Manav’s vision for securing the set of cloud-based data services that we can collectively call the “data cloud.”  In 2020, Cyral raised an $11M series A, led by Redpoint and I announced that I was advising them in March.  It’s going well.  HIT.
  8. AI/ML success in focused applications. The keyword here was focus.  There’s sometimes a tendency in tech to confuse technologies with categories.  To me, AI/ML is very much the former; powerful stuff to build into now-smart applications that were formerly only automation.  While data scientists may want an AI/ML workbench, there is no one enterprise AI/ML application – more a series of applications focused on specific problems, whether that be C3.AI in a public market context or Symphony.AI in private equity one.  HIT.
  9. Series A remains hard. Well, “hard” is an interesting term.  The point of the prediction was the Series A is the new chokepoint – i.e., founders can be misled by easily raising $1-2M in seed, or nowadays even pre-seed money, and then be in for a shock when it comes time to raise an A.  My general almost-oxymoronic sense is that money is available in ever-growing, bigger-than-ever bundles, but such bundles are harder to come by.  There’s some “it factor” whereby if you have “it” then you can (and should) raise tons of money at great valuations, whereas, despite the flood of money out there, if you don’t have “it,” then tapping into that flood can be hard to impossible.  Numbers wise, the average Series A was up 16% in size over 2019 at around $15M, but early-stage venture investment was down 11% over 2019.  Since I’m being charitable today, HIT.
  10. Autonomy CEO extradited. I mentioned this because proposed extraditions of tech billionaires are, well, rare and because I’ve kept an eye on Autonomy and Mike Lynch, ever since I competed with them back in the day at MarkLogic.  Turns out Lynch did not get extradited in 2020, so MISS, but the good news (from a predictions viewpoint) is that his extradition hearing is currently slated for next month so it’s at least possible that it happens in 2021.  Here’s Lynch’s website (now seemingly somewhat out of date) to hear his side of this story.

So, with that charitable scoring, I’m 7 and 3 on the year.  We do this for fun anyway, not the score.

 Kellblog’s Ten Prediction for 2021

1. US divisiveness decreases but unity remains elusive. Leadership matters. With a President now focused on unifying America, divisiveness will decrease.  Unity will be difficult as some will argue that “moving on” will best promote healing while others argue that healing is not possible without first holding those to account accountable.  If nothing else, the past four years have provided a clear demonstration of the power of propaganda, the perils of journalistic bothsidesism, and the power of “big tech” platforms that, if unchecked, can effectively be used for long-tail aggregation towards propagandist and conspiratorial ends.

The big tech argument leads to one of two paths: (1) they are private companies that can do what they want with their terms of service and face market consequences for such, or (2) they are monopolies (and/or, more tenuously, the Internet is a public resource) that must be regulated along the lines of the FCC Fairness Doctrine of 1949, but with a modern twist that speaks not only to the content itself but to the algorithms for amplifying and propagating it.

2. COVID-19 goes to brushfire mode. After raging like a uncontained wildfire in 2020, COVID should move to brushfire mode in 2021, slowing down in the spring and perhaps reaching pre-COVID “normal” in the fall, according to these predictions in UCSF Magazine. New variants are a wildcard and scientists are still trying to determine the extent to which existing vaccines slow or stop the B117 and 501.V2 variants.

According to this McKinsey report, the “transition towards normalcy is likely during the second quarter in the US,” though, depending on a number of factors, it’s possible that, “there may be a smaller fall wave of disease in third to fourth quarter 2021.”  In my estimation, the wildfire gets contained in 2Q21, with brush fires popping up with decreasing frequency throughout the year.

(Bear in mind, I went to the same school of armchair epidemiology as Dougall Merton, famous for his quote about spelling epidemiologist:  “there are three i’s in there and I swear they’re moving all the time.”)

3. The new normal isn’t. Do you think we’ll ever go into the office sick again? Heck, do you think we’ll ever go into the office again, period?  Will there even be an office?  (Did they renew that lease?)  Will shaking hands be an ongoing ritual? Or, in France, la bise?  How about those redeyes to close that big deal?  Will there still be 12-legged sales calls?  Live conferences?  Company kickoffs?  Live three-day quarterly business reviews (QBRs)?  Business dinners?  And, by the way, do you think everyone – finally – understands the importance of digital transformation?

I won’t do detailed predictions on each of these questions, and I have as much Zoom fatigue as the next person, but I think it’s important to realize the question is not “when we are we going back to the pre-COVID way of doing things?” and instead “what is the new way of doing things that we should move towards?”   COVID has challenged our assumptions and taught us a lot about how we do business. Those lessons will not be forgotten simply because they can be.

4.We start to value resilience, not just efficiency. For the past several decades we have worshipped efficiency in operations: just-in-time manufacturing, inventory reduction, real-time value chains, and heavy automation.  That efficiency often came at a cost in terms of resilience and flexibility and as this Bain report discusses, nowhere was that felt more than in supply chain.  From hand sanitizer to furniture to freezers to barbells – let alone toilet paper and N95 masks — we saw a huge number of businesses that couldn’t deal with demand spikes, forcing stock-outs for consumers, gray markets on eBay, and countless opportunities lost.  It’s as if we forget the lessons of the beer game developed by MIT.  The lesson:  efficiency can have a cost in terms of resilience and agility and I believe,  in an increasingly uncertain world, that businesses will seek both.

5. Work from home (WFH) sticks. Of the many changes COVID drove in the workplace, distributed organizations and WFH are the biggest. I was used to remote work for individual creative positions such as writer or software developer.  And tools from Slack to Zoom were already helping us with collaboration.  But some things were previously unimaginable to me, e.g., hiring someone who you’d never met in the flesh, running a purely digital user conference, or doing a QBR which I’d been trained (by the school of hard knocks) was a big, long, three-day meeting with a grueling agenda, with drinks and dinners thereafter.  I’d note that we were collectively smart enough to avoid paving cow paths, instead reinventing such meetings with the same goals, but radically different agendas that reflected the new constraints.  And we – or at least I in this case – learned that such reinvention was not only possible but, in many ways, produced a better, tighter meeting.

Such reinvention will be good for business in what’s now called The Future of Work software category such as my friends at boutique Future-of-Work-focused VCs like Acadian Ventures — who have even created a Bessemer-like Future of Work Global Index to track the performance of public companies in this space.

6. Tech flight happens, but with a positive effect. Much has been written about the flight from Silicon Valley because of the cost of living, California’s business-unfriendly policies, the mismanagement of San Francisco, and COVID. Many people now realize that if they can work from home, then why not do so from Park City, Atlanta, Raleigh, Madison, or Bend?  Better yet, why not work from home in a place with no state income taxes at all — like Las Vegas, Austin, or Miami?

Remember, at the end of the OB (original bubble), B2C meant “back to Cleveland” – though, at the time, the implication was that your job didn’t go with you.  This time it does.

The good news for those who leave:

  • Home affordability, for those who want the classic American dream (which now has a median price of $2.5M in Palo Alto).
  • Lower cost of living. I’ve had dinners in Myrtle Beach that cost less than breakfasts at the Rosewood.
  • Burgeoning tech scenes, so you don’t have go cold turkey from full immersion in the Bay Area. You can “step down,” into a burgeoning scene in a place like Miami, where Founder’s Fund partner Keith Rabois, joined by mayor Francis Suarez, is leading a crusade to turn Miami into the next hot tech hub.

But there also good news for those who stay:  house prices should flatten, commutes should improve, things will get a little bit less crazy — and you’ll get to keep the diversity of great employment options that leavers may find lacking.

Having grown up in the New York City suburbs, been educated on Michael Porter, and worked both inside and outside of the industry hub in Silicon Valley, I feel like the answer here is kind of obvious:  yes, there will be flight from the high cost hub, but the brain of system will remain in the hub.  So it went with New York and financial services, it will go with Silicon Valley and tech.  Yes, it will disperse.  Yes, certainly, lower cost and/or more staffy functions will be moved out (to the benefit of both employers and employees).  Yes, secondary hubs will emerge, particularly around great universities.  But most of the VCs, the capital, the entrepreneurs, the executive staff, will still orbit around Silicon Valley for a long time.

7. Tech bubble relents. As an investor, I try to never bet against bubbles via shorts or puts because “being right long term” is too often a synonym for “being dead short term.” Seeing manias isn’t hard, but timing them is nearly impossible.  Sometimes change is structural – e.g., you can easily convince me that if perpetual-license-based software companies were worth 3-5x revenues that SaaS companies, due to their recurring nature, should be worth twice that.  The nature of the business changed, so why shouldn’t the multiple change with it?

Sometimes, it’s actually true that This Time is Different.   However, a lot of the time it’s not.  In this market, I smell tulips.  But I started smelling them over six months ago, and BVP Emerging Cloud Index is up over 30% in the meantime.  See my prior point about the difficultly of timing.

But I also believe in reversion to the mean.  See this chart by Jamin Ball, author of Clouded Judgement, that shows the median SaaS enterprise value (EV) to revenue ratio for the past six years.  The median has more than tripled, from around 5x to around 18x.  (And when I grew up 18x looked more like a price/earnings ratio than a price/revenue ratio.)

What accounts for this multiple expansion?  In my opinion, these are several of the factors:

  • Some is structural: recurring businesses are worth more than non-recurring businesses so that should expand software multiples, as discussed above.
  • Some is the quality of companies: in the past few years some truly exceptional businesses have gone public (e.g., Zoom).  If you argue that those high-quality businesses deserve higher multiples, having more of them in the basket will pull up the median.  (And the IPO bar is as high as it’s ever been.)
  • Some is future expectations, and the argument that the market for these companies is far bigger than we used to think. SaaS and product-led growth (PLG) are not only better operating models, but they actually increase TAM in the category.
  • Some is a hot market: multiples expand in frothy markets and/or bubbles.

My issue:  if you assume structure, quality, and expectations should rationally cause SaaS multiples to double (to 10), we are still trading at 80% above that level.  Ergo, there is 44% downside to an adjusted median-reversion of 10.  Who knows what’s going to happen and with what timing but, to quote Newton, what goes up (usually) must come down.  I’m not being bear-ish; just mean reversion-ish.

(Remember, this is spitballing.  I am not a financial advisor and don’t give financial advice.  See disclaimers and terms of use.)

8. Net dollar retention (NDR) becomes the top SaaS metric, driving companies towards consumption-based pricing and expansion-oriented contracts. While “it’s the annuity, stupid” has always been the core valuation driver for SaaS businesses, in recent years we’ve realized that there’s only one thing better than a stream of equal payments – a stream of increasing payments.  Hence NDR has been replacing churn and CAC as the headline SaaS metric on the logic of, “who cares how much it cost (CAC) and who cares how much leaks out (churn) if the overall bucket level is increasing 20% anyway?”  While that’s not bad shorthand for an investor, good operators should still watch CAC and gross churn carefully to understand the dynamics of the underlying business.

This is driving two changes in SaaS business, the first more obvious than the second:

  • Consumption-based pricing. As was passed down to me by the software elders, “always hook pricing to something that goes up.”  In the days of Moore’s Law, that was MIPS.  In the early days of SaaS, that was users (e.g., at Salesforce, number of salespeople).  Today, that’s consumption pricing a la Twilio or Snowflake.   The only catch in a pure consumption-based model is that consumption better go up, but smart salespeople can build in floors to protect against usage downturns.
  • Built-in expansion. SaaS companies who have historically executed with annual, fixed-fee contracts are increasingly building expansion into the initial contract.  After all, if NDR is becoming a headline metric and what gets measured gets managed, then it shouldn’t be surprising that companies are increasingly signing multi-year contracts of size 100 in year 1, 120 in year 2, and 140 in year 3.  (They need to be careful that usage rights are expanding accordingly, otherwise the auditors will flatten it back out to 120/year.)  Measuring this is a new challenge.  While it should get captured in remaining performance obligation (RPO), so do a lot of other things, so I’d personally break it out.  One company I work with calls it “pre-sold expansion,” which is tracked in aggregate and broken out as a line item in the annual budget.

See my SaaStr 2020 talk, Churn is Dead, Long Live Net Dollar Retention, for more information on NDR and a primer on other SaaS metrics.  Video here.

9. Data intelligence happens. I spent a lot of time with Alation in 2020, interim gigging as CMO for a few quarters. During that time, I not only had a lot of fun and worked with great customers and teammates, I also learned a lot about the evolving market space.

I’d been historically wary of all things metadata; my joke back in the day was that “meta-data presented the opportunity to make meta-money.”  In the old days just getting the data was the problem — you didn’t have 10 sources to choose from, who cared where it came from or what happened to it along the way, and what rules (and there weren’t many back then) applied to it.  Those days are no more.

I also confess I’ve always found the space confusing.  Think:

Wait, does “MDM” stand for master data management or metadata management, and how does that relate to data lineage and data integration?  Is master data management domain-specific or infrastructure, is it real-time or post hoc?  What is data privacy again?  Data quality?  Data profiling?  Data stewardship?  Data preparation, and didn’t ETL already do that?  And when did ETL become ELT?  What’s data ops?  And if that’s not all confusing enough, why do I hear like 5 different definitions of data governance and how does that relate to compliance and privacy?”

To quote Edward R. Murrow, “anyone who isn’t confused really doesn’t understand the situation.”

After angel investing in data catalog pioneer Alation in 2013, joining their board in 2016, and joining the board of master data management leader Profisee in 2019, I was determined to finally understand the space.  In so doing, I’ve come to the conclusion that the vision of what IDC calls data intelligence is going to happen.

Conceptually, you can think of DI as the necessary underpinning for both business intelligence (BI) and artificial intelligence (AI).  In fact, AI increases the need for DI.  Why?  Because BI is human-operated.  An analyst using a reporting or visualization tool who sees bad or anomalous data is likely going to notice.  An algorithm won’t.  As we used to say with BI, “garbage in, garbage out.”  That’s true with AI as well, even more so.  Worse yet, AI also suffers from “bias in, bias out” but that’s a different conversation.

I think data intelligence will increasingly coalesce around platforms to bring some needed order to the space.  I think data catalogs, while originally designed for search and discovery, serve as excellent user-first platforms for bringing together a wide variety of data intelligence use cases including data search and discovery, data literacy, and data governance.  I look forward to watching Alation pursue, with a hat tip to Marshall McLuhan, their strategy of “the catalog is the platform.”

Independent of that transformation, I look forward to seeing Profisee continue to drive their multi-domain master data management strategy that ultimately results in cleaner upstream data in the first place for both operational and analytical systems.

It should be a great year for data.

10. Rebirth of Planning and Enterprise Performance Management (EPM). EPM 1.0 was Hyperion, Arbor, and TM1. EPM 2.0 was Adaptive Insights, Anaplan, and Planful (nee Host Analytics).  EPM 3.0 is being born today.  If you’ve not been tracking this, here a list of next-generation planning startups that I know (and for transparency my relationship with them, if any.)

Planning is literally being reborn before our eyes, in most cases using modern infrastructure, product-led growth strategies, stronger end-user focus and design-orientation, and often with a functional, vertical, or departmental twist.  2021 will be a great year for this space as these companies grow and put down roots.  (Also, see the follow-up post I did on this prediction.)

Well, that’s it for this year’s list.  Thanks for reading this far and have a healthy, safe, and Rule-of-40-compliant 2021.

Why Every Startup Needs an Inverted Demand Generation Funnel, Part III

In part I of this three-part series I introduced the idea of an inverted funnel whereby marketing can derive a required demand generation budget using the sales target and historical conversion rates.  In order to focus on the funnel itself, I made the simplifying assumption that the company’s new ARR target was constant each quarter. 

In part II, I made things more realistic both by quarterizing the model (with increasing quarterly targets) and accounting for the phase lag between opportunity generation and closing that’s more commonly known as “the sales cycle.”  We modeled that phase lag using the average sales cycle length.  For example, if your average sales cycle is 90 days, then opportunities generated in 1Q19 will be modeled  as closing in 2Q19 [1].

There are two things I dislike about this approach:

  • Using the average sales cycle loses information contained in the underlying distribution.  While deals on average may close in 90 days, some deals close in 30 while others may close in 180. 
  • Focusing only on the average often leads marketing to a sense of helplessness. I can’t count the number of times I have heard, “well, it’s week 2 and the pipeline’s light but with a 90-day sales cycle there is nothing we can do to help.”  That’s wrong.  Some deals close more quickly than others (e.g., upsell) so what can we do to find more of them, fast [2].

As a reminder, time-based close rates come from doing a cohort analysis where we take opportunities created in a given quarter and then track not only what percentage of them eventually close, but when they close, by quarter after their creation. 

This allows us to calculate average close rates for opportunities in different periods (e.g., in-quarter, in 2 quarters, or cumulative within 3 quarters) as well an overall (in this case, six-quarter) close rate, i.e., the cumulative sum.  In this example, you can see an overall close rate of 18.7% meaning that, on average, within 6 quarters we close 18.7% of the opportunities that sales accepts.  This is well within what I consider the standard range of 15 to 22%.

Previously, I argued this technique can be quite useful for forecasting; it can also be quite useful in planning.  At the risk of over-engineering, let’s use the concept of time-based close rates  to build an inverted funnel for our 2020 marketing demand generation plan.

To walk through the model, we start with our sales targets and average sales price (ASP) assumptions in order to calculate how many closed opportunities we will need per quarter.  We then drop to the opportunity sourcing section where we use historical opportunity generation and historical time-based close rates to estimate how many closed opportunities we can expect from the existing (and aging) pipeline that we have already generated.  Then we can plug our opportunity generation targets from our demand generation plan into the model (i.e., the orange cells).  The model then calculates a surplus or (gap) between the number of closed opportunities we need and those the model predicts. 

I didn’t do it in the spreadsheet, but to turn that opportunity creation gap into ARR dollars just multiply by the ASP.  For example, in 2Q20 this model says we are 1.1 opportunities short, and thus we’d forecast coming in $137.5K (1.1 * $125K) short of the new ARR plan number.  This helps you figure out if you have the right opportunity generation plan, not just overall, but with respect to timing and historical close rates.

When you discover a gap there are lots of ways to fix it.  For example, in the above model, while we are generating enough opportunities in the early part of the year to largely achieve those targets, we are not generating enough opportunities to support the big uptick in 4Q20.  The model shows us coming in 10.8 opportunities short in 4Q20 – i.e., anticipating a new ARR shortfall of more than $1.3M.  That’s not good enough.  In order to achieve the 4Q20 target we are going to need to generate more opportunities earlier in the year.

I played with the drivers above to do just that, generating an extra 275 opportunities across the year generating surpluses in 1Q20 and 3Q20 that more than offset the small gaps in 2Q20 and 4Q20.  If everything happened exactly according to the model we’d get ahead of plan and 1Q20 and 3Q20 and then fall back to it in 2Q20 and 4Q20 though, in reality, the company would likely backlog deals in some way [3] if it found itself ahead of plan nearing the end of one quarter with a slightly light pipeline the next. 

In concluding this three-part series, I should be clear that while I often refer to “the funnel” as if it’s the only one in the company, most companies don’t have just one inverted funnel.   The VP of Americas marketing will be building and managing one funnel that may look quite different from the VP of EMEA marketing.  Within the Americas, the VP may need to break sales into two funnels:  one for inside/corporate sales (with faster cycles and smaller ASPs) and one for field sales with slower sales cycles, higher ASPS, and often higher close rates.  In large companies, General Managers of product lines (e.g., the Service Cloud GM at Salesforce) will need to manage their own product-specific inverted funnel that cuts across geographies and channels. There’s a funnel for every key sales target in a company and they need to manage them all.

You can download the spreadsheet used in this post, here.

Notes

[1] Most would argue there are two phase lags: the one from new lead to opportunity and the one from opportunity (SQL) creation to close. The latter is the sales cycle.

[2] As another example, inside sales deals tend to close faster than field sales deals.

[3] Doing this could range from taking (e.g., co-signing) the deal one day late to, if policy allows, refusing to accept the order to, if policy enables, taking payment terms that require pushing the deal one quarter back.  The only thing you don’t want to is to have the customer fail to sign the contract because you never know if your sponsor quits (or gets fired) on the first day of the next quarter.  If a deal is on the table, take it.  Work with sales and finance management to figure out how to book it.

The Board View: Slides From My Presentation at Host Perform 2019

The folks at Host Analytics kindly asked me to speak at their annual conference, Host Perform 2019, today in Las Vegas and I had a wonderful time speaking about one of my favorite topics:  the board view of enterprise performance management (EPM) and, to some extent, companies and management teams in general.

Embedded below are the slides from the presentation.

The New Gartner 2018 Magic Quadrants for Cloud Financial Planning & Analysis and Cloud Financial Close Solutions

If all you’re looking for is the free download link, let’s cut to the chase:  here’s where you can download the new 2018 Gartner Magic Quadrant for Financial Planning and Analysis Solutions and the new 2018 Gartner Magic Quadrant for Cloud Financial Close Solutions.  These MQs are written jointly by John Van Decker and Chris Iervolino (with Chris as primary author on the first and John as primary author on the second).  Both are deep experts in the category with decades of experience.

Overall, I can say that at Host Analytics, we are honored to a leader in both MQs again this year.  We are also honored to be the only cloud pure-play vendor to be a leader in both MQs and we believe that speaks volumes about the depth and breadth of EPM functionality that we bring to the cloud.

So, if all you wanted was the links, thanks for visiting.  If, however, you’re looking for some Kellblog editorial on these MQs, then please continue on.

Whither CPM?
The first thing the astute reader will notice is that the category name, which Gartner formerly referred to as corporate performance management (CPM), and which others often referred to as enterprise performance management (EPM), is entirely missing from these MQs.  That’s no accident.  Gartner decided last fall to move away from CPM as a uber category descriptor in favor of referring more directly to the two related, but pretty different, categories beneath it.  Thus, in the future you won’t be hearing “CPM” from Gartner anymore, though I know that some vendors — including Host Analytics — will continue to use EPM/CPM until we can find a more suitable capstone name for the category.

Personally, I’m in favor of this move for two simple reasons.

  • CPM was a forced, analyst-driven category in the first place, dating back to Howard Dresner’s predictions that financial planning/budgeting would converge with business intelligence.  While Howard published the research that launched a thousand ships in terms of BI and financial planning industry consolidation (e.g., Cognos/Adaytum, BusinessObjects/SRC/Cartesis, Hyperion/Brio), the actual software itself never converged.  CPM never became like CRM — a true convergence of sales force automation (SFA) and contact center.  In each case, the two companies could be put under one roof, but they sold fundamentally different value propositions to very different buyers and thus never came together as one.
  • In accordance with the prior point, few customers actually refer to the category by CPM/EPM.  They say things much more akin to “financial planning” and “consolidation and close management.”  Since I like referring to things in the words that customers use, I am again in favor of this change.

It does, however, create one problem — Gartner has basically punted on trying to name a capstone category to include vendors who sell both financial planning and financial consolidation software.  Since we at Host Analytics think that’s important, and since we believe there are key advantages to buying both from the same vendor, we’d prefer if there were a single, standard capstone term.  If it were easy, I suppose a name would have already emerged [1].

How Not To Use Magic Quadrants
While they are Gartner’s flagship deliverable, magic quadrants (MQs) can generate a lot of confusion.  MQs don’t tell you which vendor is “best” because there is no universal best in any category.  MQs don’t tell you which vendor to pick to solve your problem because different solutions are designed around meeting different requirements.  MQs don’t predict the future of vendors — last-year’s movement vectors rarely predict this year’s positions.  And the folks I know at Gartner generally strongly dislike vector analysis of MQs because they view vendor placement as relative to each other at any moment in time [2].

Many things that customers seem to want from Gartner MQs are actually delivered by Gartner’s Critical Capabilities reports which get less attention because they don’t produce a simple, dramatic 2×2 output, but which are far better suited for determine the suitability of different products to different use-cases.

How To Use A Gartner Magic Quadrant?
In my experience after 25+ in enterprise software, I would use MQs for their overall purpose:  to group vendors into 4 different bucketsleaders, challengers, visionaries, and niche players.  That’s it.  If you want to know who the leaders are in a category, look top right.  If you want to know who the visionaries are, look bottom right.  You want to know which big companies are putting resources into the category but who thus far are lacking strategy/vision, then look top-left at the challengers quadrant.

But should you, in my humble opinion, get particularly excited about millimeter differences on either axes?  No.  Why?  Because what drives those deltas may have little, none, or in fact a counter-correlation to your situation.  In my experience, the analysts pay a lot of attention to the quadrants in which vendors end up in [2] so quadrant-placement, I’d say, is quite closely watched by the analysts.  Dot-placement, while closely watched by vendors, save for dramatic differences, doesn’t change much in the real world.  After all, they are called the magic quadrants, not the magic dots.

All that said, let me wind up with some observations on the MQs themselves.

Quick Thoughts on the 2018 Cloud FP&A Solutions MQ
While the MQs were published at the end of July 2018, they were based on information about the vendors gathered in and largely about 2017.  While there is always some phase-lag between the end of data collection and the publication data, this year it was rather unusually long — meaning that a lot may have changed in the market in the first half of 2018 that customers should be aware of. For that reason, if you’re a Gartner customer and using either the MQs or critical capabilities reports that accompany them, you should probably setup an appointment to call the analysts to ensure you’re working off the latest data.

Here are some of my quick thoughts the Cloud FP&A Solutions magic quadrant:

  • Gartner says the FP&A market is accelerating its shift from on-premises cloud.  I agree.
  • Gartner allows three types of “cloud” vendors into this (and the other) MQ:  cloud-only vendors, on-premise vendors with new built-for-the-cloud solutions, and on-premises vendors who allow their software to be run hosted on a third-party cloud platform.  While I understand their need to be inclusive, I think this is pretty broad — the total cost of ownership, cash flows, and incentives are quite different between pure cloud vendors and hosted on-premises solutions.  Caveat emptor.
  • To qualify for the MQ vendors must support at least two of the four following components of FP&A:  planning/budgeting, integrated financial planning, forecasting/modeling, management/performance reporting.  Thus the MQ is not terribly homogeneous in terms of vendor profile and use-cases.
  • For the second year in a row, (1) Host is a leader in this MQ and (2) is the only cloud pure-play vendor who is a leader in both.  We think this says a lot about the breadth and depth of our product line.
  • Customer references for Host cited ease of use, price, and solution flexibility as top three purchasing criteria.  We think this very much represents our philosophy of complex EPM made easy.

Quick Thoughts on the 2018 Cloud Financial Close Solutions MQ
Here are some of my quick thoughts on the Cloud Financial Close Solutions magic quadrant:

  • Gartner says that in the past two years the financial close market has shifted from mature on-premises to cloud solutions.  I agree.
  • While Gartner again allowed all three types of cloud vendors in this MQ, I believe some of the vendors in this MQ do just-enough, just-cloud-enough business to clear the bar, but are fundamentally still offering on-premise wolves in cloud sheep’s clothing.  Customers should look to things like total cost of ownership, upgrade frequency, and upgrade phase lags in order to flesh out real vs. fake cloud offerings.
  • This MQ is more of a mixed bag than the FP&A MQ or, for that matter, most Gartner MQs.  In general, MQs plot substitutes against each other — each dot on an MQ usually represents a vendor who does basically the same thing.  This is not true for the Cloud Financial Close (CFC) MQ — e.g., Workiva is a disclosure management vendor (and a partner of Host Analytics).  However, they do not offer financial consolidation software, as does say Host Analytics or Oracle.
  • Because the scope of this MQ is broad and both general and specialist vendors are included, customers should either call the Gartner for help (if they are Gartner customers) or just be mindful of the mixing and segmentation — e.g., Floqast (in SMB and MM) and Blackline (in enterprise) both do account reconciliation, but they are naturally segmented by customer size (and both are partners of Host, which does financial consolidation but not account reconciliation).
  • Net:  while I love that the analysts are willing to put different types of close-related, office-of-the-CFO-oriented vendors on the same MQ, it does require more than the usual amount of mindfulness in interpreting it.

Conclusion
Finally, if you want to analyze the source documents yourself, you can use the following link to download both the 2018 Gartner Magic Quadrant for Financial Planning and Analysis and Consolidation and Close Management.

# # #

Notes

[1] For Gartner, this is likely more than a semantic issue.  They are pretty strong believers in a “post-modern” ERP vision which eschews the idea of a monolithic application that includes all services, in favor of using and integrating a series of cloud-based services.  Since we are also huge believers in integrating best-of-breed cloud services, it’s hard for us to take too much issue with that.  So we’ll simply have to clearly articulate the advantages of using Host Planning and Host Consolidations together — from our viewpoint, two best-of-breed cloud services that happen to come from a single vendor.

[2] And not something done against absolute scales where you can track movement over time.  See, for example, the two explicit disclaimers in the FP&A MQ:

Capture

[3] I’m also a believer in a slightly more esoteric theory which says:  given that the Gartner dot-placement algorithm seems to try very hard to layout dots in a 45-degree-tilted football shaped pattern, it is always interesting to examine who, how, and why someone ends up outside that football.